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Abstract
Causal systems are complicated. Despite this, causal learning research has
traditionally emphasized how causal relations can be induced on the basis of
idealized events, i.e. those that have been mapped to binary variables and
abstracted from time. For example, participants may be asked to assesses
the efficacy of a headache-relief pill on the basis of multiple patients who take
the pill (or not) and find their headache relieved (or not). In contrast, the
current study examines learning via interactions with continuous dynamic
systems, systems that include continuous variables that interact over time
(and that can be continuously observed in real time by the learner). To
explore such systems, we develop a new framework that represents a causal
system as a network of stationary Gauss–Markov (“Ornstein–Uhlenbeck”)
processes and show how such OU networks can express complex dynamic
phenomena such as feedback loops and oscillations. To assess adult’s abili-
ties to learn such systems, we conducted an experiment in which participants
were asked to identify the causal relationships of a number of OU networks,
potentially carrying out multiple, temporally-extended interventions. We
compared their judgments to a normative model for learning OU networks
as well as a range of alternative and heuristic learning models from the liter-
ature. We found that, although participants exhibited substantial learning
of such systems, they committed certain systematic errors. These successes
and failures were best accounted for by a model that describes people as fo-
cusing on pairs of variables, rather than evaluating the evidence with respect
to the full space of possible structural models. We argue that our approach
provides both a principled framework for exploring the space of dynamic
learning environments as well as new algorithmic insights into how people
interact successfully with a continuous causal world.

Introduction

We live and act in a messy world. Scientists’ best models of real-world causal processes
typically involve not just stochasticity, but real-valued variables, complex functional forms,
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delays, dose-dependence, and feedback leading to rich and often nonlinear emergent dynam-
ics (Cartwright, 2004; Sloman & Lagnado, 2015; Strevens, 2013). It follows that learning
successfully in natural settings depends on accommodating these factors. Cognitive psychol-
ogists have explored many of these dimensions of complexity in isolation (e.g. stochasticity:
Bramley, Dayan, Griffiths, & Lagnado, 2017; Rothe, Deverett, Mayrhofer, & Kemp, 2018;
Waldmann & Holyoak, 1992; interventions: Coenen, Rehder, & Gureckis, 2015; Sloman &
Lagnado, 2005; Waldmann & Hagmayer, 2005; ?; time: Bramley, Gerstenberg, Mayrhofer,
& Lagnado, 2018; Buehner & May, 2003; Lagnado & Sloman, 2006; Rottman & Keil, 2012;
and continuous variables: Pacer & Griffiths, 2011). However, we argue these components
generally can not be isolated in realistic learning settings, meaning a deeper understand-
ing of human causal cognition will require a new framework that naturally accommodates
inference from interventions in continuous dynamic settings.

As an everyday example of a time-sensitive, dose-dependent causal relationship, consider
the complexities involved in consuming alcohol. It is common for drinkers to adjust their
consumption based on their recognition that higher doses affect inhibition or mental clarity,
that will in turn have other downstream effects on quality of conversation or willingness
to sing karaoke. The effects of alcohol consumption differ widely in quality and quantity
depending on dosage and time delays. A small glass of wine with dinner will likely have little
effect on mental clarity whereas a few shots will have a stronger effect. Further complicating
the learning problem, these effects of alcohol do not come instantaneously but are rather
delayed and distributed in time. Worse still, more complex dynamics exist, such as the
feedback loop between lowered inhibition and increased alcohol consumption. And there
are innumerable contributing factors such as diet or amount of sleep that can modulate
alcohol’s effect. Thus in settings like this, the learning problem is non-discrete (how much
alcohol did I drink) and extended in time (when did I drink it), produces evidence that is
naturally time ordered (how you feel over the preceding and subsequent hours), and contains
complicated dynamics (e.g. feedback loops). In the current paper, we study human learning
through real-time interactions with causal systems made up of continuous valued variables.
We see this setting as capturing the richness of real world causal learning, while remaining
simple and principled enough to allow for close formal analysis.

The structure of the paper is as follows. First, we summarize relevant past work on causal
structure inference from interventions, temporal information, and different representations
of functional form. Next, we lay out our new formalism for inference of causal structure
between continuous variables. We then report on an experiment, in which participants
interact with causal systems represented by sliders on the computer screen. We provide an
exploratory analysis of the interventional strategies we observed in the experiment before
analyzing structure learning through the lens of a normative Bayesian inference model
and a range of heuristic and approximate alternatives, finding evidence that people focus
sequentially on individual connections rather than attempting to learn across the full space
of possible causal models at once. Finally we discuss new opportunities provided by the
formalism introduced in this paper, including future questions in causal cognition as well
as applications to other areas such as dynamic control.
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Figure 1 . Illustration of abstraction from full timeseries data to probabilistic contingency.
(A) is a full time course of the health of 40 simulated patients throughout the course of
a classic randomized controlled trial. (B) demonstrates the type of information available
when only evaluating the health of patients at the end of the trial. (C) demonstrates the
type of information available when categorizing patients into ‘sick’ and ‘healthy’ groups,
rather than maintaining full continuous information.

Past research

Probabilistic causation over discrete events. Research in causal cognition has
generally aligned itself with the philosophical tradition of probabilistic causation, which
defines a causal relationship as one where a cause changes the probability of its effect
(Hitchcock, 1997). This definition implicitly operates over particular representations: dis-
crete states such as events or facts that have some probability of occurring or being true.
Because of this, experimental work in causal cognition has primarily focused on causal
relationships between discrete valued (often binary) variables (e.g. Ali, Chater, & Oaks-
ford, 2011; Fernbach & Erb, 2013; Hayes, Hawkins, Newell, Pasqualino, & Rehder, 2014;
Krynski & Tenenbaum, 2007; Rehder, 2014; Rothe et al., 2018; Sloman, 2005). These are
typically presented in contexts in which temporal information is either unavailable or ab-
stracted away so that cases can be summarized in a contingency table. See Figure 1 for a
simple example in which (A) continuous data is (B) snapshotted in time, in order to (C)
dichotomize and create counts of contingencies and abstract this into a probabilistic causal
relationship. This approach is very common in part because there is a well established
mathematical framework—Bayesian networks—for efficiently encoding joint distributions
of sets of variables in the form of networks of probabilistic contingencies (Barber, 2012;
Pearl, 2009).

While the probabilistic contingencies paradigm has been fruitful for exploring many
aspects of causal cognition, we are interested in other settings. As mentioned, we believe
that many real life systems may not lend themselves to discretisation, nor involve much
independent and identically distributed data with no temporal information. Instead, people
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are often have access to autocorrelated, time-dependent, continuous information and we are
interested in they how represent and draw inferences on the basis of this information.

Learning. A prominent question in causal cognition is how people learn causal rela-
tionships from contingency data such as that presented in Figure 1C. Although the liter-
ature shows that humans are often quite adept causal learners (Cheng, 1997; Griffiths &
Tenenbaum, 2005; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008) there are a number of
important exceptions. One is that updates to beliefs about causal structure on the basis of
new information are often made narrowly rather than optimally, that is, in ways that do not
compare the evidential fit against the entire hypothesis space. To model this, Fernbach and
Sloman (2009) introduced a Local Computations (LC) model, which posits that people focus
“on evidence for individual causal relations rather than evidence for fully specified causal
structures”. By ignoring the possible influences of other causes in the model, their model
captures a strong empirical pattern in which human learners exhibit order effects and tend
to overconnect their causal hypotheses (also see Taylor & Ahn, 2012). Bramley, Dayan,
et al. (2017) extended this finding to their more unconstrained task, finding evidence that
people consider local changes to adapt their previously favoured hypothesis. Together, these
studies suggest that people use a local updating strategy, testing and evaluating individual
causal links rather than updating the full posterior space. We ask whether this tendency
toward local learning extends to the continuous dynamic systems that are under study here.

Learning via interventions. As well as capturing probabilistic relationships, Bayesian
networks can be used to reason about, and from, idealized manipulations of causal systems,
or “interventions” (Pearl, 2009). Bayesian networks, at their core, deal with independence,
not dependence, relations. Because of this, if a cognizer passively observes some variables
but cannot observe the temporal direction of their influences (i.e. perhaps they influence one
another too quickly to see) they can be equally consistent with multiple causal hypotheses.
For example, the common cause X ← Y →Z and chain X → Y →Z are “Markov equiv-
alent” because, in both networks, X and Z are independent conditional on Y . However,
crucially, Markov equivalent networks do not have identical data distributions under inter-
vention. In the example of Markov equivalent networks given above, intervening to set Y to
some value y as denoted with Pearl’s 2009 “Do()” operator, would change the distribution
for X under the common cause — i.e. P (X) 6= P (X|Do[Y = y])) for at least some y — but
would not affect the distribution for X for the chain — i.e. P (X) = P (X|Do[Y = y]) for
any y.

It has been shown that people are able to learn successfully from interventions, and are
often moderately efficient in their intervention selection according to information-optimal
norms (Bramley, Dayan, et al., 2017; Coenen et al., 2015; Sloman & Lagnado, 2005; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003; Waldmann & Hagmayer, 2005). However, partic-
ipants in these studies also typically exhibited biases indicative of the influence of cognitive
constraints. For example, Coenen et al. (2015) found that, when comparing between two
potential causal networks, people appeared to follow a heuristic of intervening on nodes to
produce as many effects as possible (averaged across the candidate networks) rather than
intervening to maximally distinguish between the two. Use of this heuristic was more com-
mon when intervening under time pressure. Bramley, Dayan, et al. (2017) tested people’s
learning in a broader hypothesis space encompassing all possible 3 and 4 variable network
structures. They found that people made interventions that appeared to target uncertainty
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about a specific individual link, node or hypothesis, rather than interventions effective at
reducing their uncertainty “globally” over all possible causal graphs. Here we assess the
efficacy of learners’ interventions on continuous dynamic systems for which variables are
potentially manipulated through a range of magnitudes over an extended period of time.

Time. Time has long been seen as a powerful cue for causation (Hume, 1740), es-
pecially with regards to identifying causal direction. People rule out backwards causation,
assuming that effects cannot precede causes (Bramley, Gerstenberg, & Lagnado, 2014; Burns
& McCormack, 2009; Greville & Buehner, 2010). Work in the cognitive sciences on the use
of time in causal judgments has focused on point events separated by delays — that is,
events like explosions and collisions that occur at particular times but with negligible dura-
tion (Griffiths, 2004; Lagnado & Sloman, 2006; McCormack, Frosch, Patrick, & Lagnado,
2015; Pacer & Griffiths, 2012; Shanks, Pearson, & Dickinson, 1989). From this line of work,
we have learned more than just that temporal order is relevant for causal direction. The ac-
tual temporal dynamics of causal systems affect judgments, for example shorter and more
reliable delays between cause and effect are more readily seen as causal (Bramley et al.,
2018; Greville & Buehner, 2010).

In the most systematic work on people’s use of temporal dynamics to learn causal struc-
ture, Bramley and colleagues combined interventions and time to investigate people’s learn-
ing of causal structure between components that exhibited occasional (punctate) events that
could also be brought about by interventions (Bramley et al., 2018; Bramley, Mayrhofer,
Gerstenberg, & Lagnado, 2017). They found that people are sensitive to expected delays,
especially when they also expect the true delays to be reliable, and are judicious and sys-
tematic in their use of interventions to perturb the system. While these studies have been
valuable in demonstrating that people are sensitive to the temporal characteristics of causal
systems, many everyday systems — such as economies, ecosystems, or social groups — are
more naturally described as extended shifting influences than point events. We extend the
study of time on causal cognition to explore these new, unstudied phenomena.

Continuous Variables. As discussed above, many natural scenarios involve contin-
uous valued variables and causal influences that are typically extended in time rather than
punctate. Given the ubiquity of such systems, continuous variables have received surpris-
ingly little attention in the study of causal cognition. In a reanalysis of data from Marsh and
Ahn (2009) as well as a study of their own, Pacer and Griffiths (2011) showed that people
are capable of learning individual cause-effect relationships between continuous variables.
Soo and Rottman (2018) investigated causal relations in nonstationary time series, i.e. those
where the average value of the variables changes in time in a way unrelated to the causal
relations between those variables. They proposed three ways that the variables could be
represented before being correlated: (1) state values, (2) difference scores, and (3) trinarized
difference scores (positive, negative, or zero). In their task, people’s causal strength judg-
ments were based on the correlations between the discretized changes in variables’ values
over time rather than correlation between the variables themselves.

In sum, our approach here is novel in two key respects. First, we study a setting that,
like reality, is continuous in terms of both time and state space. This allows us to study
learning in the context of causal systerms that give rise to nonlinear emergent dynamics
and resultant evidence patterns that have not previously been explored in the context of
human causal inference. Second, we explore an interactive setting in which participants
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intervene on the system of interest in complex, extended ways, rather than merely passively
observing its behaviour or setting states across discrete trials, again mapping better onto
real world interventions.

The task

We chose a simple and intuitive structure learning task that allows for learners to use
their mouse to interact with the variables in a system represented by a set of moving sliders
on the computer screen. A depiction of how the sliders were presented is shown in Figure 4.
Participants could observe the evolving sequence of variable values but also move and hold
the variables (one at a time) at positions of their choice by using the mouse. As mentioned,
this environment allows us to test learning of causal systems with continuous valued vari-
ables and feedback dynamics. It also allows us to assess learning via interventions that
are both extended over time (learners choose how long to to intervene) and nonstationary
(learners might “hold” the variable in a particular position or “wiggle” it up and down).

Continuous Causality in Time

This section presents a formalism for modelling causal systems that relate continuous
variables in time. To define a generative model for such systems, we first introduce the
notion of an Ornstein–Uhlenbeck (OU) process and then define how multiple OU processes
can be interrelated so as to form an interacting causal system. We then describe normative
inference within this model class on the basis of both observational and interventional data.

Generative model

The Ornstein–Uhlenbeck process. An Ornstein–Uhlenbeck (OU) process is a sta-
tionary Gauss-Markov process that reverts to a stable mean (Uhlenbeck & Ornstein, 1930).
It can be conceptualized as Brownian motion with the addition of a corrective force that
biases the process’s expected value towards the mean of the distribution. The magnitude of
that force increases as a function of the distance been that mean and the process’s current
state. Formally, ∆vti — the change in variable i from time t to t+ 1 — is defined as

P (∆vti |ω, µi, vti , σ) = ω[µi − vti ] +N(0, σ) (1)

where vti is the value of i at time t, µi is the mean of the process for variable i, σ is its
variance, and ω is a parameter greater than 0 that determines how sharply the process
reverts to the mean.1 µi is also referred to as the process’s attractor state because it is the
value to which the process will revert to at asymptote. See Figure 3A for an example of an
OU process with an attractor state of 0.

OU Processes and Causality. This definition can be generalized to accommodate
OU processes with nonstationary means. In particular, we take the step of assuming that
the attractor state µ for a variable is determined by some function of the most recent values
of its cause(s). When a variable has no causes we model its attractor state as being 0.

1Throughout this work we use subscripts to denote variables and superscripts to denote time. Note that
whereas vt

i is the value of i at time t, vi is the value of i at all timesteps, vt is the value of all variables at
time t, and v is the value of all variables at all times.
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Figure 2 . Visualization of the impact of a single cause (slider X) on a single effect (slider
Y ) in an OU network with different causal strengths. Slider X is held to a value of 40 for 20
timepoints, leading slider Y to unfold over time to different values depending on the causal
strength. Probability distributions are smoothed averages of 100 runs of the network given
different causal “strengths” θXY (colored shading) where ω =.1 and σ =5.

The single cause case. For a variable i with a single cause j this function is simply,

µt+1
i = f(vtj) (2)

where vtj is the value of j at time t. As j changes over time, so too does the output of f(vtj),
which serves as the new attractor state of variable i at the next timepoint. For simplicity,
here we assume that f(vtj) is linear. Thus, the change in i at the next timestep (∆vti) is

P (∆vti |vti , vtj , ω, σ, θji) = ω[θji · vtj − vti ] +N(0, σ) (3)

where θji ∈ (−∞,∞) is a multiplier (or “strength”) mapping the value of the cause j to the
attractor state of effect i. Figure 2 presents how a variable Y changes as a function of its
cause X for a number of different values of θXY . We assume ∆t of 100ms (i.e. between t
and t+ 1) and that ω and σ remain constant, although these assumptions can be loosened
(see Lacko, 2012).

The multiple cause case. In general, a variable may have more than one cause.
Although there are a variety of ways in which multiple causal influences might combine (cf.
Griffiths & Tenenbaum, 2009; Pacer & Griffiths, 2011), here we simply assume that causes
have an additive influence on an effects’ attractor state, such that

P (∆vti |vt, ω, σ,Θ) = ω
[[∑

j

θji · vtj
]
− vti

]
+N(0, σ) (4)



CONTINUOUS CAUSAL STRUCTURE LEARNING 8

where j now ranges over all causes of variable i and Θ is a square matrix such that θji ∈ Θ
is the strength of the causal relationship from j to i.2 Simply put, the mean that variable i
reverts to is assumed to be a sum of the values of its causes, each first multiplied by their
respective θs.

A collection of connected OU processes, which we call an OU network, defines causal
relationships for all directed relations between variables and unrolls these effects over time.
For example, for a system consisting of variables X, Y , and Z, Θ specifies the strengths
of the six potential inter-variable causal relationships: X → Y , Y → X, X → Z, Z → X,
Y → Z, and Z → Y . Note that non-relationships are specified in this scheme by setting θji
to zero. At each timestep, Equation 4 is used to determine vt+1

X , vt+1
Y , and vt+1

Z as function
of their previous values vtX , vtY , and vtZ . For display purposes, it is sometimes necessary to
constrain v to be between some range. This is done by setting all vt+1 that fall outside of
the range to their nearest value in the range. The clock then moves forward and the process
repeats.

OU networks have some intuitively appealing features of continuously varying causal
relationships. Figure 3 demonstrates some of the dynamics that emerge from causal systems
simply by varying the θs. Whereas a positive θXY results in the value of Y following some
positive multiple of the value of X (Figure 3B), a negative θXY means that a decrease in
X drives up the value of Y (e.g. decreasing interest rates is generally thought to increase
inflation, Figure 3C). Feedback loops are naturally represented with nonzero values of θXY
and θYX . A positive feedback loop results if the θs are of the same sign and have an average
magnitude greater than 1 (Figure 3D) whereas a negative feedback loop results if they
are less than 1 (Figure 3E). Oscillations can be implemented with θs of mismatched signs
(such as 5 and −5, Figure 3F). Such feedback loops can be implemented between pairs of
variables or as part of a cyclic causal structure with potentially many variables. Combining
feedback loops and cycles and including asymmetrical forms can lead to even more complex
dynamics (e.g., Figure 3H). We invite the reader to build their own network and observe
the dynamics at https://zach-davis.github.io/html/ctcv/demo_ctcv.html.

Inference

We follow Griffiths and Tenenbaum (2005) in modeling people’s learning of causal graphs
as inverting the generative model. What must be inferred is the causal structure most likely
responsible for producing all variable values at all timepoints—v—under interventions.

Note that to accommodate interventions, we adopt Pearl’s (2009) notion of graph
surgery. If variable i is manipulated at time t, the likelihood that vti has its observed
value is 1 (i.e., is independent of i’s previous value or the value of its causes). We define ιti
as an indicator variable that is true if variable i is intervened on at t and false otherwise.

The single cause case. Consider the inference problem in which the goal is to de-
termine whether variable j causes variable i and, if so, the sign of that causal relationship.
That is, assume a hypothesis space L with three hypotheses. One is that θji is greater than
0, a causal relationship we refer to as a regular connection. A second is that θji is less than
0, referred to as an inverse connection. Finally, θji = 0 denotes that j has no impact on i.

2Although the OU formalism allows it, throughout this work we ignore the possibility of self-cycles, that
is, instances in which variables is a cause of itself. That is, we assume, Θii = 0.
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Figure 3 . Examples of the dynamical phenomena resultant from varying θ weights. Solid
red, dotted blue, and dashed green lines depict the values of variables X, Y , and Z, respec-
tively. (A) A system with a single variable Y whose distribution mean is stationary at 0
(i.e., µ = 0). (B) A system with variables X and Y and a θ weight from X and Y of 1
(i.e., θXY = 1). µX = 0 for first 30 timepoints and then µX = 100 for next 70. The value
of Y tracks the value of X. (C) The same as Panel B except that X and Y are negatively
related (θXY = −1). The value of Y tracks but has the opposite sign of X. (D) A sys-
tem in which X and Y are reciprocally related via θ weights that are greater than 1 (i.e.,
θXY = θY X = 2). Because the values of X and Y grow so large they are indistinguishable
in the plot. (E) The same as Panel D except that X and Y , which have an initial value
of 100, are reciprocally related via θ weights that are less than 1 (θXY = θY X = .5). The
values of X and Y eventually fluctuate around 0. (F) The same as Panel D except that
the reciprocal θs are large and of opposite sign (i.e., θXY = 5, θY X = −5). The values
of X and Y oscillate. (G) A system with three variables whose θ weights form a causal
chain, θXY = θY Z = 1. µX= 0 for 10 timepoints but then is set to 100 via an intervention.
Note that changes in Y precede changes in Z. (H) Timeseries of actual data observed by
participant 10 on trial 10, generated by a complex system with three variables and four
non-zero θs. All variables were initialized at 0 and there were no interventions.

Assume that i has no other potential causes.

Computing the posterior probability of a causal hypothesis lk ∈ L involves computing,
for each timepoint t, the likelihood of the observed change in i (∆vti) given the previous
values of i and j (vti and vtj), a value of θji corresponding to the hypothesis, the endogenous
system parameters ω and σ, and any intervention that may have occurred on i (ιti). If the
learner did not intervene on i at t, this likelihood is given by Equation 3. If they have, it
is 1. The product of these likelihoods over all timepoints is proportional to the posterior
probability of lk.
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P (lk|vi, vj ; ιi) ∝
∏
t

∫
ω

∫
θji

∫
σ
P (∆vti |vti , vtj , ω, σ, θji; ιti)P (θji|li)P (lk)P (ω)P (σ)dσdθjidω

(5)
P (ω) and P (σ) represents the learner’s prior beliefs about ω and σ. P (θji|lk) represents the
priors over θji corresponding to hypothesis lk. For example, if lk corresponds to a regular
connection, P (θji|lk) would be 0 for non-positive values of θji. For positive values, it would
reflect learner’s priors over θji for regular connections. (Later we describe how these priors
can be estimated in our experiment on the basis of an instructional phase that precedes the
causal learning task.) Applying Equation 5 to each causal hypothesis and then normalizing
yields the posterior over the three hypotheses in L.

A complication arises if variable values v are truncated between some range of values
(in our task v ∈ [–100, 100]). In the case where vti equals the maximum truncated value,
the likelihood is the mass of the likelihood distribution above the range of values. For the
minimum truncated value the likelihood is the mass of the likelihood distribution below the
range of values.

The multiple cause case. This procedure for evaluating a single potential causal
relationship generalizes to determining the structure of an entire OU network. Consider
a hypothesis space G as consisting of graphs where each graph defines, for every potential
causal relationship, whether it is positive, inverse, or zero. For a system with n variables
G would contain 32n distinct causal hypotheses; for our example system with variables X,
Y , and Z, G contains 729 graphs. The posterior probability of a graph gk ∈ G involves
computing for each variable i and timepoint t, the likelihood of the observed ∆vti given
the θs defined by gk and the state of the system’s variables at t (Equation 4), taking into
account the possibility of an intervention on i at t (ιti):

P (gk|v; ι) ∝
N∏
i=1

∏
t

∫
ω

∫
θ

∫
σ
P (∆vti |vt, ω, σ, θ; ιti)P (θ|gk)P (gk)P (ω)P (σ)dσdθdω (6)

Experiment: Causal Structure Learning

To test people’s ability to learn causal structure between continuous variables in con-
tinuous time, we conducted an experiment in which participants freely interact with sliders
governed by an OU network with hidden causal structure. Their goal was to intervene on
the system in order to discover the hidden causal structure.

Method

Participants. 30 participants (13 female, age M = 37.5, SD = 10.6) were recruited
from Amazon Mechanical Turk using psiTurk (Crump, McDonnell, & Gureckis, 2013; Gureckis
et al., 2016). They were paid $4 for approximately 30 minutes. In a post test questionnaire,
on a ten point scale participants found the task engaging (M = 7.9, SD = 2.2) and not
particularly difficult (M = 3.9, SD = 2.6).
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Figure 4 . Sliders used by participants. (A) shows that the sliders all jitter if no interventions
are made. (B) shows that the sliders do not jitter if intervened on.

Materials. Each of the three variables was represented by a vertical slider that moved
by itself according to the underlying OU network but which could also be manipulated
by clicking and dragging anywhere on the slider, overriding the state it would otherwise
have taken (see Figure 4).3 A timer was presented at the top of the screen. Participants
responded using six additional sliders presented beneath the trial window, one for each
potential causal relations. Responses were constrained to be one of three options: ‘Inverted’,
‘None’, or ‘Regular’, corresponding to θ < 0, no relationship (θ = 0), and θ > 0, respectively.
Participants were pretrained on these terms in the instructions. The sliders were constrained
to be between -100 and 100, and the buttons on the slider presented a rounded integer value
in addition to moving up and down.

Stimuli and Design. The 23 causal graphs shown in Figure 5 were selected for testing
on the basis of a number of criteria. They were roughly balanced in the number of positive
and negative links and the number of links between each of the variables. More qualitatively,
we tried to select networks that would be interesting a priori. This includes many of the
classic causal graphs such as chain networks, common causes, and common effects, but also
less-studied graphs such as those with feedback loops. The experiment always began with
two practice trials that were excluded from all analyses. These were always the two Single
cause networks (Figure 5, top left). This was followed by 23 test trials, one for each of the
networks in Figure 5 presented in random order. The OU parameters used during training
and the test were ω = .1 and σ = 5. The true θs were either 1 (for regular connections), 0
(no connection), or −1 (for inverse connections).

Procedure. To familiarize them with the interface, participants were required to first
watch four videos of an agent interacting with example causal networks. These videos
informed participants of the underlying causal structure and demonstrated an agent inter-

3See https://zach-davis.github.io/publication/cvct/ for a demo.
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Figure 5 . All 23 structures participants were tasked with learning. Black arrowheads signify
“regular” connections (θ = 1), white arrowheads signify “inverse” connections (θ = −1).

acting with the system. To minimize biasing participants toward any particular intervention
strategy, the videos displayed a variety of basic movements, including wobbling the inter-
vened on variable, holding a variable at a constant level, and holding a variable at a limit
value (e.g., 100) by moving its slider to one end of the scale. The four example causal
networks included (1) no causal connections, (2) a single regular (θ = 1) connection, (3)
a single inverse (θ = −1) connection, and (4) two connections forming a causal chain in
which one link was regular and one was inverse. To ensure that they understood the task,
participants were required to pass a five question comprehension check before starting. If a
participant responded incorrectly to any of the five questions they were permitted to retake
the quiz until they responded correctly to all five questions. This was designed to ensure
that they learned: the duration of each trial, the difference between a regular and inverted
connection, that there can be more than one connection per network, and that they must
provide a response for all six possible connections.

In the main task that followed, participants initiated a trial by pressing the “Start”
button. The sliders started moving, with the values updating every 100ms. Perceptually,
they would appear to “jitter” according to the noise associated with the underlying OU
network plus move systematically according to the unknown causal relationships. At any
time, participants were free to intervene on any variable by clicking, holding, or dragging
the requisite slider. While it was pressed down, the position of the mouse determined the
value of the variable. Once it was released the variable would continue from that point
according to the OU network. Participants were free to make (and revise) their judgments
at any point after initiating a trial but were required to enter a judgement for all six causal
relations by the end of the trial (see Figure 6). No feedback was provided at any point. After
completing the 25 trials, participants completed a brief post-test questionnaire reporting
their age, gender, engagement and subjective difficulty as well as any comments.
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Figure 6 . Judgment options for participants. Participants were presented with a ternary
choice between “inverted”, “none”, and “regular”.

Results

Participants were substantially above chance (.33) in correctly classifying causal links
into one of the three response categories (M = .82, SD = .22), t(29) = 17.48, p < .001.
They were slightly more successful in identifying regular causal links (M = .92, SD = .12)
than inverse causal links (M = .90, SD = .13), t(29) = 2.12, p = .04. Participants also
correctly classified a higher proportion of causal relationships as the trials progressed, as
demonstrated by a simple linear regression of accuracy on trial number, t(21) = 2.91, p =
.008, although this relationship was modest with participants being 0.25% more likely to
correctly identify a link for each new trial.

In identifying overall causal networks (correctly identifying all 6 of the possible direc-
tional causal relationships), participants were also well above chance (3−6 = .0014), (M =
.44, SD = .22), t(29) = 10.81, p < .001. The probability of selecting the correct network
was .79, .60, 25, and .07 for networks with 1, 2, 3, and 4 causal links, respectively. Accuracy
varied sharply with the complexity of model as shown by a repeated measures ANOVA,
F (3, 84) = 74.0, p < .001. Note that participants’ responses did not reflect a preference
toward simpler models, as they marked slightly over half of the possible connections (M
= .52, SD = .13), which was greater than the true proportion of connections in the test
networks (.39), t(29) = 5.62, p < .001. See the Supplementary Materials for results for all
tested networks.

Errors. While participants were generally well above chance in identifying causal re-
lationships, there was some systematicity to their errors. In particular, these errors closely
followed the qualitative predictions of Fernbach and Sloman’s (2009) local computations
(LC) model. The first qualitative prediction is an over-abundance of causal links. Eighty-
two percent (SD = .17) of the errors that participants made involved adding extraneous
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Figure 7 . Participant judgments of causal relationships for three tested networks. Bar
colors correspond to the true causal structure, namely, blue for regular connections and
gray for no connection. Bar heights represent mean θ reported by participants (regular =
1 and none = 0). Because these networks included only regular causal relationships, no
instances of inverse relationships are shown. Error bars denote 95% confidence intervals.

causal links, significantly greater than chance4 (.59); t(29) = 7.33, p < .001. The second
qualitative prediction of the LC model as defined in this paper is an inability to distinguish
between direct and indirect causes (e.g. in the network X → Y → Z, incorrectly also
judging X → Z). While in general participants correctly classified 82% of the causal links,
they were far more likely to erroneously add a direct link between two variables when in
fact the relationship between those variables was mediated by a third variable (M = .16,
SD = .21), performing below chance (.33); t(29) = -4.48, p < .001.

Figure 7 shows participant judgments for three classic causal structures in causal cogni-
tion: common cause, common effect, and chain networks. It shows that participants were
quite good at detecting any causal relationship in a network that existed between two vari-
ables. In the figure, these results correspond to the blue bars, which indicate that they
correctly classified a regular connection as regular. (As mentioned, participants were also
good as classifying inverse connections as inverse.) Figure 7 also shows that participants
were often good at classifying absent connections as absent (the gray bars) with one impor-
tant exception: in the the chain network Y →Z →X the relationship between Y and X
was judged to be nearly as causal as Y →Z and Z →X. That is, they failed to appreciate
that the (apparent) relationship between Y and X was in fact mediated by Z. These pat-
terns held for the other instances of the common cause, common effect, and chain networks
defined in Figure 5. Moreover, we found that, for any of the more complex networks in
Figure 5, participants had a strong tendency to infer a direct causal relationship between
two variables whenever those variables were in fact mediated by the third variable. Figure 8
presents how causal links were classified for all 23 networks.

Interventions. To achieve this level of performance, participants made heavy use of
interventions. We define a single intervention as beginning when a participant clicked on
a variable’s slider and ending when the mouse was released. The average number of inter-

4For the structures used in this experiment, a hypothetical participant who responded “inverse”, “none”,
and “positive” with equal probability would erroneously add a causal link 59% of the time.
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ventions made on a single trial was 4.94 (SD = 2.46). However, because a few participants
made a large number of interventions on most trials, this distribution was modestly skewed
with a median of 4 and mode of 3. One participant made no interventions at all.

Interventions lasted an average of 3.46 seconds (SD = 3.00) and had a range (the max-
imum value of the variable during the intervention subtracted from its minimum value)
of 138.3 (SD = 58.89). This latter measure was strongly bimodal with modes around 100
and 200, indicating that interventions typically consisted of participants dragging a variable
from about 0 to one end of the scale (-100 or 100) or then in addition dragging it to the
opposite end of the scale. Apart from these large swings, participants typically held the
variable steady at a constant value during an intervention. This conclusion is supported by
the fact that, within an intervention, the percentage of 100ms time windows in which the
variable had the same value as during the previous window was 71.2%. Four participants
had some tendency to “wiggle” the variable through a small range during an intervention
but they were the exception.

The interventions were spread about evenly over the three variables. Indeed, all three
network variables were manipulated at least once on more than 99% of the trials. Inter-
ventions varied modestly as a function of whether the manipulated variable was a cause
of other variables in the network. When it was, the intervention was both shorter (3.21s)
and had a narrower range (132.9) than when it wasn’t (3.99s and 149.5), t(28) = 3.19 and
t(28) = 6.39, respectively, both ps < .005.5 Apparently, it was easier for participants to
identify causes, which involves observing a state change in other network variables, than
non-causes, which involves the absence of such changes. Interventions on causes did not
vary substantially, in length of time or range of values, as a function of whether they had one
or two effects. Interventions also did not vary as a function of whether or not the variable
was affected by other variables in the network. In summary, participants recognized that
interventions help causal learning, that manipulating all variables is necessary to identify
the correct causal structure, and that large interventions are more useful than small ones.

Results summary. Participants exhibited considerable ability to intervene effectively
and learn causal structure in our task. Despite these abilities, they also made systematic
errors consistent with the predictions of the LC model. It is not clear whether the data
considered as a whole is more consistent with normativity or a more locally focused model.
Indeed, it is not even clear that participants are using the OU functional form to infer
connections, rather than a more general model such as one that assumes linearity. For a
more granular analysis of people’s causal structure learning, we now turn to a number of
theoretical accounts of how people learn causal structure.

Modeling

In this task we compare a total of nine models corresponding to different accounts of
how people learn causal structure. These accounts can be roughly categorized as modeling
people as normative, local, linear, or random in their causal learning behavior. We compare
the ability of these models’ to predict participants’ causal structure judgments.

5There were 28 degrees of freedom for these analyses, rather than 29, because one of the 30 participants
did not intervene.
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OU models

Normative model. Normative inference for the current task requires that a learner
maintain a distributional belief over all possible causal structures and update it according to
the data they experience. Equation 6 above defines normative inference in this task. There
has been much work suggesting that adults and children are capable learners of causal
structures and act roughly in accordance with the normative model, at least in sufficiently
simple scenarios (Gopnik et al., 2004; Griffiths & Tenenbaum, 2009). We ask whether these
conclusions generalize to the sort of causal systems under investigation here.

Recall that Equation 6 assumes that learners have priors over ω, σ, and the θs. We
assume for simplicity that learners acquire a rough approximation of the true values of these
parameters (i.e., ω = .1, σ = 5, and θ ∈ (−1, 0, 1)) while watching the four instructional
videos, but assume some spread to accommodate uncertainty. The distributions we assumed
over parameters were thus6,

θ ∼ Γ(shape = 5× θtrue, rate = 5)

ω ∼ Γ(shape = 100× ωtrue, rate = 100)

σ ∼ Γ(shape = 100× σtrue, rate = 100)

Note that θ values are defined by the graph. For regular connections, θ is distributed as
above. For inverse connections, the sampled values are negated. For non connections θ is
0.

Local computations model. We compare the normative model to a “local computa-
tions” (LC) model that has been advocated as a general-purpose account of causal learning
behavior (Bramley, Dayan, et al., 2017; Fernbach & Sloman, 2009). Applied to an OU
network, the LC model entails deciding, for each potential causal relationship considered
in isolation, whether the observed values of those two variables implies a regular, inverted,
or zero causal relation. It thus involves applying Equation 5 above to each potential causal
relationship. The LC model assumes the same priors over ω, σ, and the θs as the normative
model.

A key distinction between the normative and LC models of course is their ability to
detect whether a relationship between two variables is mediated by a third. For example,
in the network X → Y → Z, X and Z have many of the hallmarks of a direct causal
relationship: They are correlated, changes in X precede changes in Z, and intervening
on X later affects Z (but not vice versa). Whereas the normative model would take into
account the mediated relationship between X and Z (by noting the absence of an X/Z
correlation when controlling for Y ), LC, which evaluates individual causal links without
consideration of the entire graph, would not recognize the mediating role of Y and so infer
X →Z in addition to X →Y and Y →Z. Of course, we have already seen partial evidence
that participants may be poor at detecting mediated relationships (Figure 7). Modeling
will reveal whether the LC model is a good account of all the data, or if it only accounts
for participants’ errors.

6The 10% and 90% quantiles associated with these distributions are .49 and 1.60 for θ, .062 and .142 for
ω, and 4.72 and 5.29 for σ.
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Alternative models

We compare the two OU-based models to alternatives that assume linear relationships
between cause and effect. In particular, we compare two approaches to modeling timeseries
information from the literature: time-lagged correlation and Granger causality. Each of
these approaches is applied to three candidate representations for learning causal structure
between continuous variables, as introduced by Soo and Rottman (2018); state representa-
tions, difference scores, and trinarized difference scores.

In these linear models, the value of variable i at time t is modeled as

P (vti |vt−1, σ, β) =
∑
j

[
βji · vt−1

j

]
+N(0, σ) (7)

where j denotes all causes of variable i (including i itself) and βji denotes the partial
slope coefficient or strength of that cause on the effect. Analogously to our treatment of
θ values in the OU models, for the linear models we assume some uncertainty about the
strength parameter p(β) but that these differ in sign for regular and inverse connections,
and also model people as having uncertainty over standard deviation p(σ). The marginal
likelihood of vi for a graph thus involves computing, for each timepoint, the likelihood
of that variable’s value given the β predictors defined by the graph and the value(s) of
its cause(s), and marginalizing over p(β) and p(σ). We treat interventions in the same
manner as the OU models. As before, we compute the total likelihood as the product of the
marginal likelihoods of all variables at all timepoints under each graph, assume an initially
uniform prior over graphs and compute the resulting posterior. The unnormalized posterior
probability of a causal graph given all values of all variables at all timepoints is thus

P (gk|v; ι) ∝
∏
t

∏
i

∫
β

∫
σ
P (vti |vt−1, σ, β; ιi)P (β|gk)P (gk)P (σ) dσdβ (8)

This general procedure can be applied to each of the linear models by modifying the
state representation v or prior over β. For the three candidate representations introduced by
Soo and Rottman (2018): State representations involves inference over the actual variable
values; difference scores involves inference over variable values after computing vt − vt−1;
trinarized difference scores involves inference over difference scores that have been converted
to −1 when negative and 1 when positive.

The difference between time-lagged correlation and Granger causality is just whether
βii is included as a predictor, that is, whether vti is influenced by vt−1

i as well as its causes.
Granger causality includes this term while Time-lagged correlation does not.

Unlike the OU models, there is no natural ground truth parametrization for the linear
models on which to center reasonable distributional parameter beliefs. Thus we must find
another way to choose reasonable settings for p(β) and p(σ). We chose the mean of our
distributions by fitting the β̂ii, β̂ji, and σ̂ values that maximized the posterior probability
of the true causal graphs across all subject data (including βii for the Granger models). We
then made analogous assumptions about the spread around these means as we did for θ and
σ in the OU models—namely,

β ∼ Γ(shape = 5× β̂, rate = 5)
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Table 1
Summary of Model Accuracy and Performance

Model State representation Accuracy Judge BIC Px
OU local computations .89 .82 6,163 21
OU normative 1.00 .82 6,475 4
Granger causality states .91 .78 7,079 1

difference scores .82 .69 8,415 1
trinarized diff scores .49 .42 9,859 0

Time-lagged correlation states .89 .74 7,901 1
difference scores .82 .69 8,407 0
trinarized diff scores .63 .50 9,793 0

Baseline .17 .17 9,888 2
Note: Accuracy = proportion of links drawn that match ground truth. Judge =

proportion of links drawn that match participant judgments BIC = Bayesian Information
Criterion Px = number of participants best fit by that model

σ ∼ Γ(shape = 100× σ̂, rate = 100).

β values are treated the same as in the OU models. Regular connections are distributed as
above, inverse connections are negated.

Comparing the models

We compare participants’ structure judgments to the predictions of these models across
all the test trials in our experiment. In total, we consider nine models. These are eight
described above: (1) normative, (2) local computations (LC), and three variants of both
(3-5) Granger causality and (6-8) Time lagged correlation varying whether they were based
directly on states, difference scores, or trinarized difference scores. Finally, we compare these
against (9) a Baseline model that assumes each judgment is a random selection from the
space of possible graphs. We marginalized over θ, ω, σ by drawing 1,000 samples from their
respective distributions and averaging the likelihood within each causal model. To account
for decision noise in selecting causal graphs from their posterior distributions, for each model
apart from the baseline we fit (by maximum likelihood using R’s optim function) a single
softmax parameter τ that maximized the posterior probability of participant selections.

Results and discussion. Table 1 details the results of our comparison. For each
inference model we report the overall proportion of the true connections identified across
all trials assuming the most probable graph is selected at the end of each trial (Accuracy
column), the proportion of participant’s edge judgments that correspond with the most
probable graph under the model (Judge column), the Bayesian Information Criterion of
all participant’s judgments according to that model (BIC column); and the number of
participants best fit by each model.

Unsurprisingly, the normative model was the most successful at recovering the underly-
ing structure, but many other models were also successful. The only models that struggled
were those that used trinarized difference scores as their representation, showing that the
magnitude of changes in the variables is important to capturing the structure of the data.
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Next, we compared the MAP estimates of causal structure of the models to participant
judgments. In this coarse measure, the OU models were roughly equal to each other in
matching participant judgments, and were also similar to some of the linear models.

The results of the more sensitive posterior probability analysis were clearer in distin-
guishing between models. Over all participants, the LC model had the highest log-likelihood.
On a per participant basis, of the 30 participants 21 were best fit by the LC model, with
the normative model being the best account of 4 participants. The remaining 5 participants
were split among the linear models or were at baseline.

General Discussion

In this paper, we introduced a generative model of causal influence relating continuous
variables over time. We showed how such systems can exhibit emergent behaviors such as
excitatory or inhibitory feedback and oscillations, depending on specific settings of relative
causal strengths between variables. When learning from this rich data, people were best
described as considering individual pairs of variables, rather than updating their beliefs over
entire structures. This finding accords with an intuitive description of how people handle
continuous information flowing in real time: they focus their attention on smaller, more
manageable problems rather than attempting to tackle the full torrent of information.

Local inference

A key result in our task was that most participants evaluated pairwise relationships
between variables rather than updating their beliefs over all possible causal structures.
This conclusion was drawn from the superior fit of the locally focused LC model, and
corroborated by qualitative results such as the finding that participants often inferred direct
causal relationships between variables that were in fact only indirectly related (through a
third mediating variable). These results are consistent with previous findings suggesting
that, rather than representing a full hypothesis space, people tend to consider a single
hypotheses to which they make small alterations (Bramley, Dayan, et al., 2017; Fernbach
& Sloman, 2009; Quine, 1969). Here we show that this principle of causal learning extends
to much richer scenarios. Indeed, it may be the case that real time continuous information
places stronger demands on attention and memory than the original settings that provided
evidence for the LC model. If this were true, it would be especially reasonable to use the
resource-efficient local strategy in these more demanding environments.

A potential alternative conceptualization of the LC model is that it instantiates the
idea that distal causes are still considered as causal. For example, most people would not
find it inappropriate to say that the reintroduction of wolves to Yellowstone National Park
caused changes to the ecosystem, even if many of these changes came indirectly through
other variables such as changes in the movement of elk (Fortin et al., 2005). While this is a
reasonable conceptualization, we believe that it is not as good an account of our data as the
LC model. For one, we explicitly provided participants with an example in the instructions
that showed the movement of a chain network without the additional indirect connection.
This should have reduced the possibility that participants were unclear about whether they
should consider distal causes as causal. This accords with findings in the literature that
people exhibit locality despite feedback, incentives, and explicit instruction with examples
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that encourage people to not draw the additional causal link (Bramley, Dayan, et al., 2017;
Bramley, Lagnado, & Speekenbrink, 2015; Fernbach & Sloman, 2009). More fundamentally,
this “distal” account makes assumptions about how people are approaching the task that
we consider unlikely. It models them as doing full normative inference, and then having a
response bias to draw indirect connections. Figure 8 shows that indirect connections were
less likely to be responded to as causal than the direct connections, which would imply a
response bias where participants have the full causal model but would only on occasion draw
the additional indirect connection. The LC model, in contrast, naturally considers indirect
connections as less causal due to the underlying dynamics of OU networks. While indirect
causal relationships do have many hallmarks of direct causal relationships (correlation,
temporal asymmetry, asymmetric results of interventions), they are not identical. In X →
Y →Z, changes to Z in response to X are more temporally removed and noisier than would
be predicted if there were a direct X →Z connection, and therefore the LC model assigns
a lower (but still reliably non-zero) probability to these potential connections. Because the
LC model accounts for the patterns of errors as naturally arising from the interaction of
system dynamics and cognitive limitations, rather than as a response bias over normative
inference, we consider it a better account of the behavior of participants in our task.

Interventions

One contribution of the OU network framework is the introduction of a qualitatively
different type of intervention. In a typical study of causal cognition learners are able to,
on a particular trial, turn a variable on or off and observe the values of other variables. In
contrast, interventions in our task are extended through time and can encompass a wide
range of variable values. Participants generally recognized that the most informative actions
involved large swings in variable values and systematic manipulation of each variable in the
system.

Nevertheless, note that while their interventions were informative they were less than
optimal. In fact, the most efficient interventions in this task involve rapid swings between
the ends of the variable’s range. But whereas participants used the full range, they tended to
hold a variable at one value for longer than necessary. Doing so yields useful but somewhat
redundant information. Of course, perhaps this strategy reflected participants’ need for
redundant information imposed by cognitive processing limits. It may also reflect their
inability or unwillingness to engage in the rapid motor movements required by the optimal
strategy.

Although participants could intervene on any variable at any time to set it to any
value, they were constrained to manipulating one variable at a time. Future studies could
expand the action space by, for example, allowing participants to “freeze” one variable
at a value while manipulating others. Of course, an ability to “control for” one variable
while investigating the relationship between two others might help learns identify mediating
relationships. For example, freezing Y and then manipulating X in X → Y → Z would
result in to no change in Z, perhaps reducing the chance that the learner would conclude
X →Z.
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Future directions

The proposed OU network framework can be extended across a variety of dimensions in
future research. For example, in this paper’s instantiation of OU networks, a cause impacts
an effect on the next timepoint. The impact of a cause on effect could be distributed
over multiple timepoints, or at some stochastically selected timepoint. Such studies could
contribute to debates about the influence of time on causal learning, such as that judgments
of causality are strengthened by temporal contiguity (Shanks et al., 1989) or the reliability
of delays (Bramley et al., 2018; Buehner & May, 2003). Varying the gap between timepoints
(in this task t to t+1 was 100ms) may result in different approaches by participants. Use
of continuous variables naturally allows consideration of a greater number functional forms
relating causes and effects (Griffiths & Tenenbaum, 2009). Latent causes can be introduced
to model implicit inference of mechanisms relating cause and effect. Complex, non-linear
data can be generated to study people’s learning from time series data (Caddick & Rottman,
2019; Soo & Rottman, 2018). The outcomes of experiments using these richer causal systems
will help to evaluate the generalizability of models of causal cognition that have heretofore
been tested mostly on Bayes nets applied to discrete events.

The formalism developed in this paper also has potential application to the domain of
control. Many aspects of everyday life, as well as interesting domains in AI and machine
learning, can be can be classed as control problems in which there is initial or ongoing
uncertainty about the structure of the control domain. Some studies have explored settings
where participants attempt to manipulate a simple environment that is reactive to their
decisions to maximise gain (for review, see Osman, 2010). However, one limitation of extant
work is that the environments typically used are ad hoc and no class of environments has
been thoroughly explored. In parallel, much recent attention in machine learning has been
given to demonstrations of successful control in small worlds such as atari and board games.
However, generalisation to new goals or related environments continues to be poor (Lake,
Ullman, Tenenbaum, & Gershman, 2017). In recent work, we propose OU networks as a
systematic class of control environments. This approach allows research into human control
to ask new questions, such as what structures are inherently easy or hard to identify or
control and under what circumstances does successful control depend on an accurate model
of a system’s structure (Davis, Bramley, Rehder, & Gureckis, 2018).

Functional form

Given people’s well-known bias towards assuming linear functional forms (Brehmer,
1974; Byun, 1996; DeLosh, Busemeyer, & McDaniel, 1997; Kalish, Griffiths, & Lewandowsky,
2007; Kalish, Lewandowsky, & Kruschke, 2004; Kwantes & Neal, 2006), it may be a surpris-
ing result that the alternative models assuming linearity did not match people’s judgments
as well as those using the Ornstein–Uhlenbeck functional form. This result has a number
of possible explanations. For one, as discussed before, Ornstein–Uhlenbeck processes ap-
pear to be relatively common across a range of domains, and people may have a developed
representation of the functional form that they brought to the task. It is also possible that
participants do not have a direct representation of Ornstein–Uhlenbeck processes, but were
able to recognize higher-order movement statistics that are not present in linear models
(e.g. OU processes, unlike linear relationships, exhibit acceleration toward their attractor
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basin). For example, people may have applied a general function approximator such as a
Gaussian Process to the relationship between cause and effect and abstracted a function
closer to OU processes than linearity. Future work could explore settings where learning
the functional form between cause and effect is not possible (such as one-shot learning) or
settings where the impact a cause has on its effect is linear.

Limitations

There are a number of limitations to the current project that could be addressed with
further experiments. For one, while we did account for uncertainty over parameters of our
models, we did not account for other sources of noise such as the likelihood that people
cannot attend to all three variables simultaneously.7 This issue will likely compound as
more variables are added. Additionally, the presented analyses in this paper discuss but
do not model intervention decision-making, a critical component of the active learning of
causal structure. Future analyses would naturally involve, as a benchmark to compare
against humans, models for selecting actions that maximize expected information gain.

Conclusions

We have no doubt that the canonical causal relationships between discrete events (e.g.,
take a pill → headache relieved) that have been the main focus of causal cognition often
serve as highly useful and approximately correct parts of human’s semantic representation of
the world. But sometimes details matter. Causal influences emerge over time, may reflect
functional relationships that are as complex as the underlying mechanisms that produce
them, and afford interventions that vary in their duration and intensity. Complex patterns
of feedback may be the rule rather than the exception (Cartwright, 2004; Sloman & Lagnado,
2015; Strevens, 2013). Apprehending these properties may even be a precondition to forming
the (highly summarized and approximate) causal relations between discrete events that are
so simple to represent and easy to communicate.

We instantiated a learning task in which people were confronted with some of these
challenges, including continuously-observed continuous variables, feedback cycles, and the
ability to carry out extended interventions. We found that they exhibited considerable
success identifying the correct causal structure but also committed systematic errors, errors
consistent with a model that describes people as narrowly investigating individual causal
relationships rather than updating their beliefs wholesale. We hope that the formalism
presented in this paper will be help spur greater study of the mechanisms for learning and
action in this important class of problems.
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Supplement

Figure 8 presents results for all 23 tested networks. Note that although overall per-
formance was good, participants consistently reported the presence of a direct causal re-
lationship between variables whenever that relationship was in fact mediated by the third
variable. For example, in the first instance of a Chain network in the figure (Y →Z →X),
participants incorrectly judged that Y → X (i.e., ignored the mediator Z). In the first
instance of a Feedback Loop W/Feedout (Z ↔ Y → X), they judged that Z → X (ig-
noring mediator Y ). In the first instance of a Feedback Loop W/Feedin (X → Z ↔ Y ),
they judged that X →Y (ignoring mediator Z). In the first instance of a Feedback Loop
W/Chain (Y →Z ↔X →Y ), they judged that Y →X (ignoring mediator Z) and Z →Y
(ignoring mediator X).
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Figure 8 . Participant judgments of causal relationships for all 23 tested networks. Blue,
gray, and red bars correspond to regular, absent, and inverse connections, respectively. Bars
represent the mean θ reported by participants, where regular = 1, none = 0, and inverse =
–1. Error bars denote 95% confidence intervals.


