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How do we make causal judgments? Many studies have
demonstrated that people are capable causal reasoners, achiev-
ing success on tasks from reasoning to categorization to in-
terventions. However, less is known about the mental pro-
cesses used to achieve such sophisticated judgments. We
propose a new process model—the mutation sampler—that
models causal judgments as based on a sample of possible
states of the causal system generated using theMetropolis-
Hastings sampling algorithm. Across a diverse array of tasks
and conditions encompassing over 1,700 participants, we
found that our model provided a consistently closer fit to
participant judgments than standard causal graphical mod-
els. In particular, we found that the biases introduced by
mutation sampling accounted for people’s consistent, pre-
dictable errors that the normativemodel by definition could
not. Moreover, using a novel experimental methodology,
we found that those biases appeared in the samples that
participants explicitly judged to be representative of a causal
system. We conclude by advocating sampling methods as
plausible process level accounts of the computations speci-
fied by the causal graphical model framework and highlight
opportunities for future research to identify not just what
reasoners compute when drawing causal inferences, but
also how they compute it.
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1 | INTRODUCTION

The representation and use of causal knowledge is a central object of investigation in the cognitive sciences. Causal
knowledge has been found to affect cognition in a wide variety of inference problems, from reasoning and learning to
decision-making and categorization (for summaries, see Rottman &Hastie, 2014; Waldmann &Hagmayer, 2013). One
formal model of the representation of causal knowledge—causal graphical models—has achieved success in modeling
human performance across these tasks. A well-known advantage of causal graphical models is that they provide a
compact representation of a causal system—only the local relations between a variable and its causal parents need
be explicitly represented. Another is that they are accompanied by formal methods that specify how a causal model
should be learned from observed data, used to draw inferences (including counterfactual judgments and the effects
of interventions by an external agent), and updated in light of changing conditions (e.g. a malfunctioning component).
However, causal graphical models are understood to provide a computational level account of causal cognition. Like all
such accounts they specifywhat but not necessarily how specific computations are carried out (Anderson, 1990; Marr,
1982). This article extends this past work by proposing a new rational process model of the cognitive mechanisms that
underlie many causal judgments. As a process model, the goals of this account include explaining why people commit
the causal reasoning errors they do and how the correct inferences they draw can be computed within the resource
limitations imposed by the human cognitive system.

1.1 | Sampling

Bayesian modeling has provided an influential account of human cognition (Griffiths et al., 2010). However, because
these models are often highly computationally expensive, they are generally regarded as computational level accounts
of behavior. Recently, a major project has been under way in the cognitive sciences to identify the processes by which
people are able to approximate the normative Bayesian standard. Generally, researchers look for models that are
minimally resource intensive but will still, at asymptote, converge to the correct answer. Monte Carlo methods are
a natural approach to this resource-accuracy tradeoff. In particular, this paper deals with a popular variant of Monte
Carlo methods—Markov chain Monte Carlo (MCMC)—that has achieved particular success in modeling cognition. For
more extensive treatment of Monte Carlo methods and their uses in cognitive science, see Dasgupta et al. (2017).

MCMC models have successfully accounted for systematic biases across a variety of tasks. In one of the first
applications of sampling methods to cognition, Lieder et al. (2012) showed that a simple MCMC model replicates
the classic anchoring and adjustment effect (Tversky and Kahneman, 1974). It has been argued that taking a limited
number of samples can be rational when taking into account things such as time costs (Vul et al., 2014) or the utility
of exaggerated differences between decisions (Hertwig and Pleskac, 2010). Dasgupta et al. (2017) proposed MCMC
models as a unified account of how people approximate Bayes’ rule, capturing diverse phenomena such as the crowd
within (Vul and Pashler, 2008) or self-generation (Koehler, 1994) effects. Sampling accounts are not restricted to
probability estimation tasks. For example, Johnson and Busemeyer (2016) modeled deviations from expected utility
theory as resulting from biased sampling from prospects.

1.2 | Sampling and Causal Models

We propose a model for resource-constrained inference using causal graphical models. In particular, we propose that,
when reasoning about a causal system, people think about concrete cases—states of the causal system in which all
relevant variables are instantiated with values. For example, consider the causal graph in Fig. 1A in which variables
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YA andYB are causes of variable X . Because the variables in this network are assumed to be binary, the state space of
this graph—the possible assignments to the three variables—consists of the eight states shown in Fig. 1B. Our model
assumes that reasoners sequentially sample these states. Later we will show that these generated samples can be
used to carry out the kinds of inferences that can be modeled with causal graphical models.

The current model fits in with the burgeoning field of resource-rational models of cognition, which explain failures
to adhere to the normative model as resulting from resource limitations. As in other sampling accounts of cognition,
our approach is a balancing act between two goals. On one hand, we aim to explain how people succeed at making
sophisticated causal judgments. We do this by showing that a psychologically plausible number of samples can re-
produce human-level causal inference. On the other hand, we also aim to model the consistent, predictable errors
commonly observed in research on causal cognition, analogously to sampling accounts of the anchoring effect or
prospect theory (Lieder et al., 2012; Johnson and Busemeyer, 2016). For example, people systematically violate the
Markov condition, a foundational feature of causal graphical models that defines patterns of conditional independence
among a graph’s variables. This principle is crucial for statistical inference from causal graphical models (Pearl, 1988;
Koller and Friedman, 2009), and has been argued to be necessary for a rigorous account of interventions (Hausman
and Woodward, 1999). We describe the Markov condition and the empirical violations later.

The paper will proceed as follows. We first formalize ourmodel, whichwe dub themutation sampler. Themutation
sampler embodies four principles, principles thatwewill show are sufficient to reproduce a variety of causal judgments.
The first principle of course is sampling itself, that people think of concrete cases and ultimately draw inferences on the
basis of those cases. The second is that each subsequent case that is sampled differs minimally from the previous one;
in fact, it is formed by “mutating” the value of only a single graph variable. The third principle concerns the network
state at which sampling commences. We present both psychological and computational arguments for why sampling
should commence at certain network states that we will dub “prototype states.” The fourth principle is simply that of
resource limitations, the inability of human reasoners to take a large number of samples. When combined with the
other principles, small samples will be shown to account for the empirical phenomena we consider here.

Following the presentation of the mutation sampler, we compare fits of it and standard causal graphical mod-
els to empirical data from a wide variety of tasks and conditions. We first consider a canonical causal judgment, a
conditional probability task in which a reasoner predicts the state of one variable given the state of other variables
that are causally related. This section considers data from 19 experimental conditions over 8 distinct causal network
topologies and focuses on the model’s accounts of the systematic reasoner errors alluded to above (e.g., indepen-
dence violations). We then ask if the mutation sampler’s predictions generalize to other causal-based tasks, namely,
judging category membership and choosing interventions to obtain a desired outcome. These two sections consider
data from 28 experimental conditions involving 9 different causal structures. We then further consider whether the
mutation sampler’s predictions generalize to a completely novel causal-based task, one that is designed to tests its
assumption in relatively direct way. In the General Discussion we will compare the mutation sampler to other models
of causal-based judgments.

To foreshadow, we show that the mutation sampler consistently provides a better fit to multiple types of causal
judgments as compared to normative causal graphical models. This finding demonstrates that both the striking suc-
cesses and systematic errors that people make when reasoning about causal systems can be accounted for by the
assumption that they reason on the basis of a modest number of samples taken from the possible states of a causal
system rather than computing a normative response. We will conclude by advocating the framework of sampling
methods as plausible process level accounts of the computations specified by the causal graphical model framework.
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2 | THE MUTATION SAMPLER

As mentioned above, the proposed model is a sampling algorithm that implements a few key principles of causal infer-
ence. The sampling algorithmwe choose—Metropolis-Hastings (MH)Markov ChainMonte Carlo—is a rational process
model in that it asymptotically converges to the optimal response. Of course, there are many possible sampling algo-
rithms that also converge, and future work could discriminate between these algorithms through a resource rational
analysis (Griffiths et al., 2015). Instead, the mutation sampler uses MH as an implementation of its key principles. See
the General Discussion for another sampling algorithm—the Gibbs sampler—that also fits people’s behavior well, but
only if all four key principles hold.

2.1 | Principle 1: Sampling Concrete Cases

The proposed model is a variant of Metropolis-Hastings (MH) Markov Chain Monte Carlo, a computationally efficient
rejection sampling method for estimating probability distributions (Hastings, 1970; Van Ravenzwaaij et al., 2018). MH
methods sample from a distribution in a manner that ensures that the generated samples will, after normalization,
approximate the original distribution, with convergence guaranteed as the size of the sample grows large. Whereas
MHmodels often deal with a continuous state space, the proposed model samples over the discrete states of a causal
graph — like the one in Fig. 1. Just as with any distribution, the joint probability distribution associated with this graph
can be approximated via MH sampling over its states. Note that our psychological claim will be that people make
causal judgments on the basis of the samples they draw from a causal graph without necessarily forming a normalized
joint distribution. The unnormalized joint distribution represented by the sample is sufficient to model the inferences
that can be computed from a causal graphical model.

F IGURE 1 (A) A common effect graph. (B) Possible states of a common effect graph. Filled circles indicate a
variable instantiated with a value of 1, open circles one with a value of 0. Edges denote reachable states as defined
by the mutation sampler’s proposal distribution.

Like all MCMC methods, MH constructs a sequence (or chain) of samples, where the choice of each subsequent
sample in the chain depends on the previous sample. Specifically, MH is defined by two components: a proposal
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distribution Ñ(q ′ |q ) and a transition probability a(q ′ |q ) where q is the current state and q ′ is the proposal state in a
random walk. The standard MH transition probability a(q ′ |q ) determines whether the next state in the chain should
repeat the current state q or involve a transition to the new state q ′ and is defined by,

a(q ′ |q ) = min
(
1,
π(q ′)

π(q )

)
where π(q ) is the joint probability of the causal system being in state q . Importantly, a(q ′ |q ) only requires the com-
putation of the relative probability of two system states, π(q ′) and π(q ). This property is key because it means that
a(q ′ |q ) can be computed without access to the graph’s full joint distribution, which of course is what the sampling
process is attempting to approximate.

2.2 | Principle 2: Mutation Proposal Distribution

The proposal distribution Ñ(q ′ |q ) determines which graph state should be proposed as the next state in the chain
(i.e., the state that will play the role of q ′ in the computation of a(q ′ |q )). We assume a Ñ(q ′ |q ) that restricts reachable
states q ′ to those that differ from the current state q by the value of one binary variable. Themutation sampler derives
its name from the fact that potential proposals are those formed by “mutating” the value of a single variable. Each
mutated (reachable) state has an equal probability of being selected as a proposal. Edges in Fig. 1B denote reachable
states from some starting state. This proposal distribution was inspired by models in other domains that assume
the proposal distribution makes small adjustments to the currently held state (Bramley et al., 2017; Johnson and
Busemeyer, 2016; Lieder et al., 2012). In addition, later we present experimental results that provide direct empirical
support for this proposal distribution.

Note that this proposal distribution confers additional efficiency benefits. Because only one variableVi is changed,
the ratio π(q′)

π(q ) simplifies to

π(v ′
i
,v−i )

π(vi ,v−i )
=
π(v ′

i
|v−i )π(v−i )

π(vi |v−i )π(v−i )
=
π(v ′

i
|v−i )

π(vi |v−i )
=
π(v ′

i
|ui )

π(vi |ui )

where vi and v ′i are the values of variableVi in q and q ′, respectively, and ui denotes the state of the variables inVi ’s
Markov blanket. By definition, variables outsideVi ’s Markov blanket are independent ofVi given ui ; thus, π(vi |v−i ) =
π(v ′

i
|ui ) is entailed. In a causal graphical model, a variable’s Markov blanket includes its direct parents, its direct

children, and the other direct parents of its direct children (Koller and Friedman, 2009). It is often convenient to again
express π(q

′)

π(q ) as the relative likelihood of two (now partial) network states by noting that π(v
′
i
|ui )

π(vi |ui )
=
π(v ′

i
,ui )π(ui )

π(vi ,ui )π(ui )
=
π(v ′

i
,ui )

π(vi ,ui )
.

Examples of variables’ Markov blanket and the resulting simplification of π(q′)
π(q ) are presented in Fig. 2; quantitative

examples of the calculation of MH transition probabilities are presented in Appendix A. In particular, Appendix A
demonstrates how those transition probabilities reduce to simple expressions involving only the local probabilities
that define how variables are generated from their parents (known as a graph’s conditional probability distributions,
or CPDs). The fact that CPDs are assumed to be explicitly represented as part of a causal graphical model means
that a chain of samples can be generated with exceptional efficiency. The General Discussion will consider additional
efficiencies that can be realized depending on the particular causal judgment a reasoner is faced with.
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F IGURE 2 Examples of the calculation of Metropolis-Hastings ratio. When the mutated variable is E , π(q ′)/π(q )
reduces to π(ce′)/π(ce) because E ’s Markov blanket consists of only C . That is, for purposes of this calculation the
states of A, B , and D in q and q ′ can be ignored. When the mutated variable is A, the calculation of π(q ′)/π(q ) can
ignore the state of D and E . When the mutated variable is C , it can ignore the state of D .

2.3 | Principle 3: Biased Starting Points

The model thus far is simply an efficient MH sampler for estimating a causal graph’s joint distribution. Importantly,
however, we introduce a bias in the starting point for sampling: Sampling always starts from one of the ‘prototype’
states, those in which nodes are either all present (0) or all absent (1). For example, for the network in Fig. 1A, the
prototypes are the bottom left and top right corners of Fig. 1B, states referred to as y 0

A
y 0
B
x0 and y 1

A
y 1Bx

1, respectively.1

We suggest that prototypes readily come to mind as plausible states at which to start sampling because they are
guaranteed to be consistent with the causal relations. Because the prototypes include no instances in which a cause
is present but an effect absent (or vice versa), the reasoners can identify them as consistent with the causal relations
without attending to aspects of the causal graph such as the strength, direction, or functional form of the causal
relations. In fact, Appendix B demonstrates that this assumption is not only psychologically plausible, it often leads
to more accurate causal inferences for a given sample size. This finding reflects the fact that the prototypes often
are the high probability states of a causal system with generative causal links, so starting with these states results in
quicker convergence to the true joint distribution. Note that the General Discussion will consider generalizations of
the mutation sampler to causal graphs with inhibitory causal links. There we will consider the appropriate points to
start sampling from such graphs.

We also propose that, depending on the domain being reasoned about, one of the two prototype states may come
to mind more readily than the other. For example, some of the empirical studies we analyze later taught participants
novel categories with inter-feature causal relations and explicitly informed them that some category features are more
likely than others. In such cases, we introduce a bias parameter that adjusts the probability of initializing the chain at
each prototype. Unless otherwise mentioned, bias is set to .50, meaning that the chain is equally likely to be initialized
at either prototype state.

1Throughout this article we use lowercase and superscripts to denote the state of a variable, that is, v j
i
≡Vi = j . Thus, x0 denotes that X is absent, y 1

A
that

YA is present, and so forth.
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2.4 | Principle 4: Limited Capacity

Regardless of our proposal distribution and biased initialization, the chain of samples generated by the mutation sam-
pler is guaranteed to converge to the normative joint distribution as defined by the causal graphical model. However,
convergence is likely only when the number of samples is large. In contrast, we assume that people are resource-
constrained and thus can only take a few samples (on the order of a dozen rather than thousands or millions). Fol-
lowing Bramley et al. (2017), we assume that people have a fixed capacity for sampling but vary in the number of
samples taken for any particular judgment, albeit with the constraint that at least two samples are drawn (the initial
prototype and one more). To instantiate these constraints, for each judgment we draw from a Poisson distribution
with mean λ′ a quantity k ′; the number of samples taken is k = k ′+2 (and so the mean number of samples is λ = λ′+2).
Larger λ values signify that a participant has a capacity to take many samples and so would behave more in line with
a normative causal graphical model. Smaller λ values signify a limited capacity to take samples and thus a stronger
divergence from the normative model. In particular, when λ is small the mutation sampler will not have time to fully
explore the state space and so will overestimate the probability of states near the starting point and underestimate
the remaining states.

These effects are illustrated in Fig. 3, which presents the joint distributions derived by the mutation sampler for
two types of graphs: a common effect graph (panel A) and a common cause graph in which X is a cause ofYA andYB
(panel B). The blue lines with closed plot points represent the normative joint distribution—that is, for each of the eight
possible graph states, the (joint) probability of that state—generated by the causal graphical model under a particular
parameterization (computed via the standard methods defined in Appendix A).2 The red lines with open plot points
represent approximations of that distribution derived from the mutation sampler for three different values of λ: 4,
8, and 32. To make the predictions of the mutation sampler comparable to the normative model (and each other),
the samples it generates have been normalized by dividing the number of visits to each state by the total number of
samples.

A comparison of the joint distributions in Fig. 3 sheds insight into how the mutation sampler works. For both
graphs, the joint probabilities for the prototype states estimated by the mutation sampler are greater than those
derived from the normative model, a consequence of sampling beginning at those states. Conversely, the mutation
sampler’s joint probabilities for the remaining network states are less than those of the normative model. We argue
that the fact that mutation sampling reproduces the general shape of the true joint distribution explains why people
draw approximately veridical causal inferences. The systematic deviations from that joint explains the common errors
they make. Note that the magnitude of those deviations vary with the average sample size λ. By the time that λ equals
32, the discrepancy between the joint distributions of the mutation sampler and the normative model has become
very small, confirming that the mutation sampler converges to the normative model when the resources required for
extensive sampling are available.

Also note that the mutation sampler’s predictions in Fig. 3 represent the joint distributions’ expected values rather
than a single run of the sampler. These expected values can be computed analytically. First, the distribution over the
graph states representing which are likely to be the current state at sample n can be computed by multiplying the
distribution at sample n − 1 by the matrix of transition probabilities between graph states defined by the Metropolis-
Hastings rule (the initial distribution before sampling commences is .50 at the two prototypes and 0 otherwise). Sum-

2The probabilities in Fig. 3 match what states intuition indicates should be more or less likely in light of the causal relations. For both causal graphs the
prototype states in which variables are either all absent (y 0

A
y 0
B
x0 ) or all present (y 1

A
y 1
B
x1 ), shown on the far left and right, respectively, of each panel, are

highly probable states. For the common effect graph, states in which the effect X is accompanied by one cause (y 1
A
y 0
B
x1 and y 0

A
y 1
B
x1 ) are moderately

probable whereas the state where both causes are present but the effect absent (y 1
A
y 1
B
x0 ) is quite improbable. For the common cause graph, states in which

the cause X is accompanied by one effect (x1y 0
A
y 1
B
) and (x1y 1

A
y 0
B
) are moderately probable whereas one where both effects are absent (x1y 0

A
y 0
B
) is not.
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F IGURE 3 Joint probability distributions for (A) a common effect graph and (B) a common cause graph. The
horizontal axis presents graph states in the same format as Fig. 1 (i.e., filled circles indicate a 1, open circles a 0).
Causal relations in both networks are assumed to be generative, independent, and combine according to a noisy-or
integration function (see Appendix A). Both networks are parameterized such that the marginal probability of the
causes = .50, the causal strength = .50, and the strengths of background causes = .33. The blue line (closed plot
points) represents the joint distribution entailed by the normative model. Red lines (open plot points) represent the
joint distributions implied by the mutation sampler, with thicker lines meaning fewer samples (thick: λ = 4; medium:
λ = 8; thin: λ = 32).

ming these distributions yields the expected number of visits to each graph state after n samples. Then, the expected
joint associated with a given λ can be computed by taking a weighted average of the distributions computed at every
chain length.3 Nevertheless, remember that our psychological claim is that reasoners run a single chain of samples
for each causal judgment. We will consider some consequences of that claim (e.g., the inherent variability of causal
judgments) in the General Discussion.

2.5 | Example Run

The previous sections formalized how the mutation sampler generates a sequence of samples. However, it may be
helpful to see an example of the process at work. Table 1 shows a single run of the mutation sampler for the common
effect graph in Fig. 1A. The chain starts at one of the prototype states, in this case y 1

A
y 1Bx

1. Then, a proposal that
differs by only one variable (y 1

A
y 0
B
x1) is generated. The MH ratio (the ratio of the proposal state’s probability to the

current state’s probability) is calculated and compared to a random number generated from Uni f (0, 1) (refer again
to Appendix A for the calculation of MH ratios). If the ratio is greater than the random number, the current state is

3Because in a Poisson distribution the probability of any value of k’ is non-zero, we clipped that distribution so as to consider the values of k’ that accounted
for .999 of the distribution. For example, the values of k’ from 0 to 15 account for .999 of a Poisson distribution with a mean of 8. We thus computed the
16 joint distributions associated with the values of k’ of 0, 1, ..., 15 and then averaged those joints, each weighted by their probability (as specified by the
Poisson distribution).
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state (q ) proposal (q ′) π(q′)
π(q ) Uni f (0, 1) ratio > rand?

y 1
A
y 1Bx

1 y 1
A
y 0
B
x1 .79 .32 True

y 1
A
y 0
B
x1 y 1

A
y 0
B
x0 .54 .74 False

y 1
A
y 0
B
x1 y 1

A
y 1Bx

1 1.27 .84 True
y 1
A
y 1Bx

1 y 1
A
y 1Bx

0 .21 .56 False
y 1
A
y 1Bx

1 y 1
A
y 0
B
x1 .79 .38 True

y 1
A
y 0
B
x1 y 0

A
y 0
B
x1 .46 .11 True

y 0
A
y 0
B
x1 y 0

A
y 0
B
x0 2.33 .29 True

y 0
A
y 0
B
x0 y 1

A
y 0
B
x0 .50 .33 True

y 1
A
y 0
B
x0 y 0

A
y 0
B
x0 2.00 .80 True

y 0
A
y 0
B
x0 y 0

A
y 1Bx

0 .50 .09 True
y 0
A
y 1Bx

0 ... ... ... ...

TABLE 1 Example run of the mutation sampler for a common effect graph (marginal probability of causes = .50,
causal strength = .50, and strength of background causes = .33).

updated to the proposal state. If it is smaller, the proposal is rejected and the current state is unchanged. This process
continues until a chain of the desired length is acquired.

As mentioned, the sequence of samples obtained by this process serves as an estimate of causal graph’s joint
distribution. The joint distribution estimated by a long chain of samples will be virtually indistinguishable from that
specified by the normative model. The one estimated by a short chain will exhibit the sorts of deviations shown in
Fig. 3. Once obtained, the estimated joint can then be used to carry out the inferences typically supported by causal
graphical models.4 In particular, the fits of the mutation sampler to the multiple empirical studies that are presented
in the following sections each first estimate a joint distribution and then compute the causal-based judgments that
were presented in that study.

Although the strategy of generating a full joint distribution and then computing the needed inference is completely
general, there are certain types of inferences forwhich evenmore efficient sampling strategies exist—in particular ones
that sample only over those network states that are needed to compute the inference. In the General Discussion
we will describe how the mutation sampler can incorporate such sampling strategies and the additional efficiencies
obtained when it does so.

2.6 | Summary

Wenow summarize the key claims of themutation sampler. First, the generally good performance of human causal rea-
soners is attributed to sampling network states in such a manner that the obtained sample approximates the causal
network’s true joint distribution (Principle 1). That sample can then be used to derive a variety of causal-based in-

4A technical question that arises is how to handle the instances of division by zero that may occur for certain types of inferences when the number of visits
to relevant system states is zero. We generally avoid this issue because, as described above, the mutation sampler predictions we present are based on the
expected number of visits to a system’s states and the minimum number of samples taken is at least two, constraints that entail that the expected number
of visits to each state will be greater than zero. However, exceptions occur for causal models with degenerate parameter values. For example, if the causal
relation C → E in Fig. 2 is deterministically sufficient (C always produces E ) then the expected number of visits to any state in which C = 1 and E = 0

will be 0 and the computations of, say, p(a1 |c1e0) will involve division by zero. Similarly, if C → E is deterministically necessary (E has no causes other
than C ) then the expected number of visit to any state in which C = 0 and E = 1 will be 0. We handle such edge cases by initializing the number of visits
to each state with a very small value (10−10 ). The General Discussion will discuss mutation sampler predictions that are based on single chain of samples
(rather than the expected number of visits to each state) and show how initializing the number of visits a small value may in fact have a role in explaining the
variability associated with causal inferences.
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Principles Causal Causal Causal Causal
Model Implemented Reasoning Categorization Interventions Representations
Normative 5506.6 37.9 11.7 899.3
Unbiased Egalitr. Sampler 1, 4 5563.6 39.8 9.8 1016.2
Egalitarian Sampler 1, 3, 4 5333.8 40.3 0.6 856.1
Unbiased Sampler 1, 2, 4 5452.0 31.6 6.8 947.9
Mutation Sampler 1, 2, 3, 4 5304.7 26.9 -3.2 853.9

TABLE 2 AIC values of alternative models defined by dropping core principles of the mutation sampler.

ferences. Second, that such inferences are sometimes in error is attributed to the existence of cognitive resource
limitations that restrict the number of samples taken (Principle 4). That such errors are systematic—that their pattern
repeats across subjects and causal situations (as described below)—is attributed to the fact that sampling is biased to
commence at certain network states (the prototypes) (Principle 3). It is also attributed to the fact that each subse-
quently sampled network state differs from the previous state by at most one variable (Principle 2).

The mutation sampler bears some similarities to past models of causal reasoning. For example, the mutation
sampler is like mental models theory (MMT) (Johnson-Laird, 1980) in that it assumes that concrete possibilities (i.e.,
models) are represented and that some possibilities aremore likely to be represented than others. It is also like Rehder’s
2018 beta-Q model in proposing that people draw inferences on the basis of a non-normative joint distribution in
which homogeneous prototype states are over-represented. Indeed, the mutation sampler can be viewed as a process
level implementation of the principles embodied by beta-Q. In the General Discussion we compare the mutation
sampler with these and other accounts of human causal reasoning.

3 | EMPIRICAL TESTS

We now assess the mutation sampler as an account of human causal judgments. Because our claim is that people
generate samples of concrete states for multiple types of causal judgments, a key test of the mutation sampler is
whether its predictions are borne out across a variety of causal reasoning studies. In particular, we assess fits of the
mutation sampler to existing empirical datasets in reasoning, categorization, and intervention. To further test the
task-generality of our model, we assess its fit to an entirely new task, one that asks subjects to make direct judgments
of joint probability.

In each section the key comparison will be on the account of the empirical data provided by the mutation sampler
as compared to the normative graphical model framework. A secondary goal will be to provide support not only for the
mutation sampler but also for each of its four principles considered independently. To this end, we also discuss fits of
not only themutation sampler but also alternative samplingmodels in which one ormore of those principles have been
relaxed. For example, relaxing Principle 3 by starting to sample at a randomly chosen system state rather than one
of the two prototype yields a model we will refer to as the unbiased sampler. Relaxing Principle 2 by using a proposal
distribution in which all network states have equal probability of being selected as a proposal yields the egalitarian
sampler. Relaxing both Principles 2 and 3 yields the unbiased egalitarian sampler. Because the Metropolis-Hastings
rule embodied by the mutation sampler guarantees convergence to the true joint distribution, relaxing Principle 4 by
stipulating unlimited sampling corresponds to the normative model. The results of these alternative models for each
empirical section are summarized in Table 2.

Note that the general structure of these sections is to pushmost of the specifics aboutmodel fitting to appendices,
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providing only high-level summaries of the relative performance of the models. This allows us to put a spotlight on
illustrative examples showing why the mutation sampler achieves better fits than the alternative models, while still
allowing motivated readers to delve into the particulars if they choose.

3.1 | Causal Reasoning

In a first empirical test of the mutation sampler, we assess how it accounts for conditional probability judgments that
are drawn on the basis of causal knowledge. Appendix C presents fits of the normative model and the mutation sam-
pler to 19 experimental conditions from four published articles, involving a total of 690 participants and 8 distinct
causal network topologies. In every condition participants were first instructed on causal knowledge and then pre-
sented with a series of conditional probability queries, judgments in which participants estimate the probability that
one variable is present given the state of one or more of the other variables.

For each participant, we fit versions of the normative model and the mutation sampler suitable for the causal net-
work topology taught to that participant. For both models, those parameters included one representing the marginal
probability of the variables that are root causes in a graph (e.g. YA and YB in Fig. 1), one representing the strength
of every causal relation in the network, and one representing the strength of alternative causes (causes not explicitly
part of the causal network itself), and a scaling parameter that scaled the predicted conditional probabilities onto the
0-100 rating scaled that participants used. The mutation sampler had an additional λ parameter representing mean
chain length, that is, the mean number of samples taken. Details of the fitting procedure and the best fitting average
parameter values are presented in Appendix C for each condition along with a number of measures of quality of fit.

Appendix C reveals that the mutation sampler yielded a better fit (according to a measure that corrects for the
number of parameters, AIC) as compared to the normative model in every one of the 19 experimental conditions. In
addition, a larger number of participants were better fit by the mutation sampler in 16 of the 19 conditions.

We briefly summarize the performance of the mutation sampler in two key conditions. First consider the three-
variable common cause condition (YA ← X → YB ) in Fig. 4A. The Markov condition associated with causal graphical
models and alluded to earlier stipulates that a variable is statistically independent of its non-descendents conditioned
on the state of it immediate parents. Applied to the common cause graph, the Markov condition states that the two
Y s should be independent conditioned on X , that is, the probability of oneY (call itYi ) given the state of X should be
unaffected by whether the state of the otherY (Yj ) is present, absent, or unknown. In other words, it should hold that
p(y 1

i
|x0y 0

j
) = p(y 1

i
|x0) = p(y 1

i
|x0y 1

j
) and p(y 1

i
|x1y 0

j
) = p(y 1

i
|x1) = p(y 1

i
|x1y 1

j
).5 These predictions are represented by

the two horizontal blue lines in Fig. 4A, which depicts the normative model’s best fit to these data. The figure reveals
that participants instead violated the conditional independence required by the Markov condition, judging that, for
example, p(y 1

i
|x1y 0

j
) < p(y 1

i
|x1) < p(y 1

i
|x1y 1

j
). This finding has been replicated in multiple studies (Ali et al., 2011;

Lagnado & Sloman, 2004; Fernbach & Rehder, 2013; Mayrhofer & Waldmann, 2015; Park & Sloman, 2013; 2014;
Rehder & Burnett, 2005; Rehder, 2014; 2018; Rottman & Hastie, 2016; Walsh & Sloman, 2004; see Hagmayer, 2016
or Rottman & Hastie, 2014 for review). Fig. 4A also reveals that those independence violations are reproduced by the
mutation sampler. The independence violations predicted by the mutation sampler are a direct consequence of its
biased starting points combined with a relatively small number of samples.

Second, for the three-variable common effect condition (YA → X ←YB ; Fig. 4B), the normative model stipulates
that the twoY s should be unconditionally independent. That is, it should hold that p(y 1

i
|y 0
j
) = p(y 1

i
|y 1
j
). This predic-

5Because of the symmetry of the two causal networks in Fig. 4 and the study’s extensive counterbalancing of materials, we generally collapse over inferences
involving variables that play interchangeable roles, such asYA andYB in Fig. 4. For example, the rating for the conditional probability judgment p(y 1

i
|x1)

shown in the figure is the average of p(y 1
A
|x1) and p(y 1

B
|x1), p(y 1

i
|x1y 0

j
) is the average of p(y 1

A
|x1y 0

B
) and p(y 1

B
|x1y 0

A
), and so forth.
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F IGURE 4 Data from Rehder and Waldmann (2017), Experiment 1. Fits of the mutation sampler (red lines, open
plot points) and the normative model (blue lines, closed plot points) are superimposed on the empirical conditional
probability judgments (gray bars). For example, in these studies participants judged the presence of the
to-be-inferred variable on a 0-100 scale. Error bars denote 95% confidence intervals.

tion is represented by the horizontal blue line in Fig. 4B, the normative model’s best fit to these data. Yet participants
judged that p(y 1

i
|y 0
j
) < p(y 1

i
|y 1
j
) instead. This apparent expectation that the causes of a common effect graph are

positively correlated has been observed in other studies (Luhmann & Ahn, 2007; Perales et al., 2004; Rehder & Bur-
nett, 2005; Rehder, 2014; 2015; 2018; Rottman & Hastie, 2016; Trueblood et al., 2017; cf. Von Sydow et al., 2010).
Fig. 4B also reveals that the mutation sampler correctly accounts for this violation of independence.

The mutation sampler also accounts for another reasoning error that participants commit with the common effect
graph in Fig. 4B. Explaining away is a signature property of common effect graphs with independent generative causes.
If X is observed to occur then the probability thatYi is present of course increases. But if it is then further observed
that the other cause Yj is present then the probability that Yi is present should decrease back towards its baseline.
Conversely, if Yj is observed to be absent then the probability of Yi should increase. That is, it should hold that
p(y 1

i
|x1y 0

j
) > p(y 1

i
|x1) > p(y 1

i
|x1y 1

j
). In fact however, research finds that participants often explain away too little or

not at all (Morris & Larrick, 1995; Rehder, 2014; 2018; see Rottman & Hastie, 2014, for a review). The right three bars
in Fig. 4B illustrate the three conditional probability judgments relevant to explaining away. The fits of the normative
model to these data points reveal that explaining awaywith Rehder andWaldmann’s participants was indeed tooweak
(the slope of the blue line is steeper than the empirical ratings). In contrast, the mutation sampler correctly predicts
this too weak explaining away (the slope of the red line is shallower).

As indicated above, we also fit alternative versions of the mutation sampler in which one or more of the four
principleswere relaxed. The “Causal Reasoning” column in Table 2 presents the AIC values averaged over all conditions
for the full set of models we tested. Recall that relaxing Principle 3 yields the unbiased sampler, relaxing Principle 2
yields the egalitarian sampler, relaxing Principles 2 and 3 yield the unbiased egalitarian sampler, and relaxing Principle
4 (i.e., engaging in unlimited sampling) or Principle 1 (avoiding sampling entirely) yields the normative model. Table 2
indicates that the mutation sampler yields a fit that is not only better than the normative model but also better
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than each of the alternative sampling models that do not implement all four principles. The supplementary materials
presents an example of how each of the four principles independently contribute to the success of the mutation
sampler by presenting the fits of each sampling model to one particular data set.

3.2 | Causal Categorization

As mentioned, the design of the mutation sampler was partly inspired by the need to explain prominent failures in
human causal reasoning, such as independence violations and weak explaining away. Having shown that it succeeds
at this task, the next two sections ask whether its predictions generalize to alternative kinds of causal judgments. In
this section, we assess how the mutation sampler accounts for categorization judgments drawn on the basis of causal
knowledge.

Appendix D presents fits of the normative model and the mutation sampler to 25 experimental conditions from 7
published articles, involving a total of 1044 participants and 9 distinct causal network topologies. In every condition
participants were instructed on novel categories whose features were causally related. For example, some participants
were informed of a type of star namedMyastars with binary dimensions such as type of helium (ionized or not), density
(high or normal), number of planets (large or normal), and so forth. The generative causal relations were described
as one feature causing another (e.g., ionized helium causes a large number of planets). After learning their assigned
category participants were presented with test items with features and asked to rate on a 0-100 scale the likelihood
that each was a member of the category.

We fit versions of the normative model and themutation sampler suitable for the causal network topology in each
experimental condition. Because the materials were categories, their description included information specifying that
one feature on each binary dimension was more prevalent than the other. For example, in one study, participants
were told that “Most Myastars have high density whereas some have normal density.” Because of these uneven base
rates, we granted the mutation parameter the additional bias parameter described above that controls the probability
that sampling process starts at the prototype state with all 1s versus the one with all 0s.

Details of the studies and fitting procedure are presented in Appendix D, along with the best fitting parameters
and measures of fit. It reveals that the mutation sampler yielded a better fit (correcting for the number of parameters)
as compared to the normative model in 21 of the 25 experimental conditions. Fig. 5 presents categorization queries
from three of those conditions, which again superimposes the fits of the normative model and mutation sampler on
the empirical ratings. Note that the values of the fitted bias parameter was greater than 0.5 in the large majority of
studies, suggesting that it indeed reflected the fact that one feature on each dimension was considered characteristic
of the category and the other was uncharacteristic.

Fig. 5A presents the categorization ratings associated with a common effect network with three cause features.
The eight distinct types of categorization test items presented in the figure are organized into two groups of four. The
group on the left includes the test items in which the common effectX is absent. As the number ofY s that are present
increases from zero to three, categorization ratings decrease, because more Y s means more violations of the causal
relations. The group on the right includes the test items in which X is present. For these items ratings increase with
moreY s because more causal relations are confirmed (and, generally, because more characteristic features makes for
a better category member). Although the normative model (blue lines, closed plot points) accounts for this qualitative
pattern, it underestimates the joint probability of the two prototypes (y 0

A
y 0
B
y 0
C
x0 and y 1

A
y 1B y

1
C
x1; see outer bars in

the figure) and slightly overestimates the states in between. In contrast, the mutation sampler (red lines, open plot
points) yields a better account of these data, including the two prototypes.

Fig. 5B presents results from a three feature causal chain. From left to right, the eight test items are organized
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F IGURE 5 Categorization data from (A) Rehder (2003a), common effect condition; (B) Rehder and Kim (2010),
Experiment 1, weak condition; and (C) Rehder (2015), Experiment 1, conjunctive condition. Fits of the mutation
sampler (red lines, open plot points) and the normative model (blue lines, closed plot points) are presented
superimposed on the empirical data (gray bars). Error bars denote 95% confidence intervals.
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into (a) the x0y 0z 0 prototype, (b) the three items in which one feature is present, (c) the three in which two features
are present, and (d) the x1y 1z 1 prototype. Within both the one-feature and two-feature items, the items on the left
(x0y 1z 0 and x1y 0z 1) violate two causal relations whereas the othermembers of each group violate only one. Although
participants’ ratings reflect this difference in the number of violated causal relations, the panel makes clear that they
do not do so to the degree predicted by the normative model. In contrast, the mutation sampler reproduces these
ratings because it reduces differences in the joint probability of non-prototype items.

Fig. 5C presents results from a common effect network with two features that are a conjunctive cause of a third.
The six types of test items are organized into two groups. X is absent in the group on the left and present in the
one on the right. When X is absent, the normative model predicts that the joint probabilities will increase with the
introduction of the firstY cause feature but then sharply decrease with the introduction of the second, because when
both Y s are present the absence of X represents a violation of the (conjunctive) causal relation. Participants ratings
reflected this pattern, but less sharply than the normative model. The mutation sampler, in contrast, reproduced
participants’ ratings.

The “Causal Categorization” column in Table 2 presents the AIC values averaged over the 25 experimental con-
ditions to not only the normative model and the mutation sampler but also each of the alternative sampling models.
Once again, we found that the mutation sampler yielded the best fit. That its fit was superior to the normative model
provides support for the sampling approach to causal categorization (Principles 1 and 4). That it was superior to the
alternative sampling models supports a proposal distribution that only proposes states that differ by one variable
(Principle 2) and that sampling begins at the prototypes (Principle 3). The supplementary materials presents fits of
each sampling model to one particular data set.

3.3 | Causal Interventions

The third type of task we aim to account for is causal interventions. Whereas in a typical causal inference a reasoner
observes the states of one or more variables and then predicts the state of another variable, in an intervention the
reasoner is asked to imagine that an agent external to the causal system has acted on the system so as to set one of
the variables to a particular state. Causal graphical models stipulate that valid inferences depend on whether variables
are observed or intervened upon.

Consider the two causal models tested by Waldmann and Hagmayer (2005, Experiment 1) shown above Fig. 6I.
Participants were told they were being instructed on a sleeping sickness in which a mosquito bite causes the produc-
tion of a substance named pixin. In one condition, participants were taught the causal relations between pixin (P) and
xanthan (X), sonin (S), gastran (G), and histamine (H) depicted by Model A in Fig. 6I. In another they were taught Model
B, which is identical to Model A except that the direction of the causal relationship between X and G is reversed. All
participants then observed training data consisting of 20 patients and their values on each of the five variables. This
data reflected deterministic causal relations (a cause was always accompanied by its effect) and a base rate for P of
0.5. Participants then predicted the state of S given the state of H in a particular patient. Whereas in the observation
condition participants merely observedH to be high (or low), in the intervention condition they were told that a doctor
had inoculated the patient with a substance that raises (or lowers) the level of H (such interventions are depicted by
a double-lined arrow in Fig. 6I and are denoted do(hi )).

The importance of the state of H being due to an intervention is that an inference from H to P is no longer
licensed. According to the logic of graph surgery (Pearl, 2000), an intervention on H can be modeled by the removal
of the P → H causal relation (depicted by a dashed line in Fig. 6I). Thus, the difference between the observation and
intervention condition is that whereas H provides information about S in either condition in Model B (via the path
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H −G − X − S ), it does so only in the observation condition in Model A (the H − P − X − S path is blocked when H is
intervened upon).

As was the case for the previous judgment types, we also fit the alternative samplingmodels to these experiments.
The “Causal Intervention” column in Table 2 indicates that once again the mutation sampler yielded a better fit than
not only the normative model but also each of the alternative sampling models (see the supplementary materials for
the fits of each model to Waldmann and Hagmayer’s Experiment 1).

� �Model A Model B Common cause (CC) Chain (CH)

F IGURE 6 Intervention data from Waldmann and Hagmayer (2005), Experiments 1 (panel I) and 2 (panel J).
Double-lined arrows indicate interventions.

The empirical results from Waldmann and Hagmayer’s (2005) Experiment 1 are shown in Fig. 6I. The four infer-
ences with Model A (H = high vs. low crossed with H observed or intervened upon) are shown on the left and those
with Model B are shown on the right. For Waldmann and Hagmayer’s purpose, the important finding was that partic-
ipants judged H to be highly diagnostic of S in Model B regardless of whether H was observed or intervened upon,
whereas for Model A H was regarded as diagnostic of S when H was observed, but not when it was intervened upon.
This result highlighted the fact that reasoners are in fact quite sensitive to the different inferences that are licensed
when a variable is intervened upon rather than observed. For our purpose, the important finding is that whereas the
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difference between p(s1 |do(h1)) and p(s1 |do(h0)) in Model A was indeed modest, it was clearly greater than zero.
This is the case despite the fact that H and S are conditionally independent in Model A after the surgery that re-
moves P → H . That is, from the perspective of the normative causal graphical model framework, the results in Fig. 6J
represent another form of independence violation.

To illustrate the performance of the mutation sampler in this context, we fit it (red lines, open plot points) and
the normative model (blue line, closed plot points) to the aggregated ratings in each experimental condition. For
the mutation sampler, we assume that sampling occurs over the graphs in Fig. 6 in the observation conditions but
that it occurs over the post-surgery version of those graphs (i.e., the dashed arrows are removed) in the intervention
conditions. (See Appendix E for additional details regarding the fitting procedure.). Fig. 6I shows that both models
account for most data points. But whereas the normative model is constrained to predict p(s1 |do(h1)) = p(s1 |do(h0)),
the mutation sampler correctly predicts that p(s1 |do(h1)) > p(s1 |do(h0)).

Fig. 6J presents the results from Experiment 2 fromWaldmann and Hagmayer (2005). As was the case for Models
A andB in Fig. 6I, the common cause and chainmodels tested in this experiment license the same qualitative inferences
under observation but not under intervention (in this experiment, variable S was observed or intervened upon and
X was the to-be-predicted variable). In particular, whereas the normative common cause model predicts p(x1 |s1) >
p(x1 |s0), it also predicts p(x1 |do(s1)) = p(x1 |do(s0)) because of the surgery that removes P → S causal relation. But
although participants’ inferences again showed that they were quite sensitive to observations versus interventions,
they incorrectly judged that p(x1 |do(s1)) > p(x1 |do(s0)). The fits in Fig. 6J superimposed on the empirical ratings show
that this independence violation can be accounted for by the mutation sampler but not the normative model. Note
that unlike the first experiment, the data accompanying the causal models implied causal links that were quite strong
but not deterministic, demonstrating that independence violations in the context of interventions are not limited to
deterministic relations. Just as with the previous data sets, the mutation sampler yielded a better fit than not only the
normative model but also the three alternative sampling models (Table 2).

4 | CAUSAL REPRESENTATIONS

One key aspect of the empirical results presented thus far is that the mutation sampler accounts for not only a large
number of experimental conditions and participants but also different types of causal judgments. This result lends
support to our assumption that the samples generated by mutation sampling serve as the basis for many judgment
types and that the small but systematic distortions introduced by that sampling will therefore manifest themselves
on multiple tasks. Our final empirical test of the mutation sampler involves a novel methodology that provides a
relatively direct assessment of participants’ beliefs about the relative likelihood of the states of a causal graph. We
ask whether the distortions introduced by mutation sampling — distortions we have implicated as the source of the
reasoning errors in the previous sections — can be observed directly in participants’ own generated samples.

4.1 | Method

4.1.1 | Materials

Participants were presented with causal graphs in one of three domains: meteorology, sociology, or economics. Each
domain had three variables (in economics: interest rates, trade deficits, and retirement savings; in meteorology: ozone
levels, air pressure, and humidity; in sociology: urbanization, interest in religion, and socioeconomic mobility). Each
variable could take on two possible values. One of these values was described as “Normal” and the other was either
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“High” or “Low”. The values of the variables were mixed to prevent domain-specific beliefs from affecting the results
(alternate values were either all “High”, all “Low”, or a mixture of “High” and “Low”). For half of the participants the
causal relations on which they were instructed formed common effect graph (YA→X←YB ), whereas for the other half
they formed a common cause graph (YA←X→YB ). Each causal relationship was expressed as the High (or Low) value
of one variable causing the High (or Low) value of another. For example, in the domain of economics one of the causal
relationships was “Low interest rates cause small trade deficits. The low cost of borrowing money leads businesses to
invest in the latest manufacturing technologies, and the resulting low-cost products are exported around the world.”
(No information was given about the relations between the “Normal” values of the variables.) See Rehder (2014) for
additional examples of the causal relations.

4.1.2 | Procedure

Each participant was instructed on either a common cause or a common effect graph. Participants first studied screens
of information that defined the variables, presented verbal descriptions of each causal relation (including the mech-
anism via which a cause could independently generate the effect), and a diagram of the causal relationships. Partic-
ipants were then required to pass a multiple-choice test of this knowledge that ensured they knew which variables
were causally related and the direction of those relationships.

Next, participants were asked to generate a data set that they would expect to result from the causal graph. The
causal relationship between smoking and lung cancer was used as an example. Participants were shown the four
cells formed by crossing smoker/non-smoker with lung cancer/no-lung cancer and how (in terms of how hypothetical
people were allocated to the four cells) a greater proportion of smokers had lung cancer as compared to non-smokers.
Participants were asked to generate an analogous distribution in their assigned domain (economics, etc.). Specifically,
they were given 50 U.S. pennies and asked to distribute them among the cells formed by crossing the three binary
variables. They did so by placing the coins on a large sheet that contained the eight possible states (the position of
the states on the sheet was randomized).6

4.1.3 | Design and Participants

The experiment consisted of a 3 (domain) by 4 (variable states, e.g., all “High”) by 2 (network structure, i.e., common
cause or common effect) between-participants design. 120 New York University undergraduates received course
credit for participation.7

4.2 | Results

Initial analyses revealed no effect for domain or variable states, so the results were collapsed over these factors. As
expected, the allocation of coins differed depending on whether participants were instructed on a common cause or
common effect graph and thus the results from these two conditions are presented separately.

6In particular, for each of the three domains there were four alternate value configurations (all “High”; all “Low”; two “High” and one “Low”; and one “High”
and two “Low”). For each of these twelve counterbalanced conditions, there were two separate sheets with the position of the concrete cases on the sheet
randomly assigned (resulting in a total of 24 sheets).

7This study was approved by the New York University Institutional Review Board under protocol number IRB-FY2017-68.
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4.2.1 | Common Effect Condition

Fig. 7A presents how participants allocated the 50 coins to the eight states of a common effect graph (gray bars),
states depicted in the original Fig. 1A. First note that these allocations indicate that participants judged that the two
prototype states (y 0

A
y 0
B
x0 and y 1

A
y 1Bx

1), shown on the far left and far right of Fig. 7A, respectively, were the most
probable whereas the rest of the states were less probable. This result was expected and indicates that participants
attended to the causal relations they learned. However, the important theoretical question is whether their distribu-
tions of coins reflects the kinds of distortions relative to the normative model predicted by the mutation sampler. To
answer this question, Fig. 7A also presents the best fits of both the normative model (blue line, closed plot points) and
the mutation sampler (red line, open plot points) superimposed on the empirical data.8 Note that, relative to the nor-
mative model, the mutation sampler overpredicts the number of coins for the two prototype states and underpredicts
the remaining states, a pattern that of course reflects the theoretical predictions presented earlier in Fig. 3A. More
importantly, the figure makes clear that participants’ distributions of coins were better accounted for by the mutation
sampler. Indeed, a measure of fit that corrects for the difference in the number of parameters in the two models (AIC)
confirmed that the mutation sampler yielded a better fit as compared to the normative model (AIC of 793.4 vs. 993.2).
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F IGURE 7 Results from the common effect condition. (A) Fits of the mutation sampler (red line, open plot points)
and normative (blue line, closed plot points) are presented superimposed on participant’s distribution of coins (gray
bars). (B) Phi coefficients derived from participant’s judgments in the common effect condition along with those
derived from corresponding mutation sampler and normative model fits. Error bars denote 95% confidence intervals.

We also wanted to relate the results in Fig. 7A to the findings reported earlier regarding how people answer
conditional probability queries. To do so we derived measures that reflect the statistical relationships among the
three variables implied by a participant’s distribution of coins. In particular, we first normalized that distribution and
then computed the phi coefficient between a Y and an X , φ(Yi ,X ) (the coins were aggregated so that the two Y s

8The best fitting parameters were those that maximized the likelihood of the normalized distribution of coins. Averaged over participants, those parameters
were c = .519, m = 0.440, and b = .243 for the normative model and c = .534, m = 0.410, b = .328, and λ = 10.1 for the mutation sampler. To make them
comparable to participants’ distribution of coins, in Fig. 7A the models’ fits have been multiplied by 50.
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are interchangeable), between the Y s themselves, φ(YA,YB ), and between the Y s conditioned on the presence of
X , φ(YA,YB |x1). These measures averaged over participants are presented in Fig. 7B. First note that the fact that
φ(Yi ,X ) >> 0 indicates that participants distributed the coins in a manner that reflected positive correlations be-
tween the Y s and X and thus their understanding that the Y s were generative causes of X . Of greater theoretical
importance is the fact that φ(YA,YB ) was also significantly greater than 0, t (59) = 3.62, p < .001. That is, the positive
correlation between the causes of a common effect graph, observed earlier in people’s causal inferences (see Fig. 4B)
and representing an independence violation, also manifested itself in their distribution of the coins. Finally, note that
φ(YA,YB |x

1) is significantly less than 0, t (59) = -2.07, p < .05. That is, the negative correlation between the causes
conditioned on the presence of the common effect observed earlier in people’s explaining away inferences (Fig. 4B)
also manifested itself in their distribution of coins.

To directly assess the models’ ability to account for these effects, we also derived the phi coefficients implied
by their fits to the distributions of coins. These coefficients are superimposed on the empirical phi coefficients in
Fig. 7B. As expected, the normative model, which stipulates that the Y s are independent (i.e., that φ(YA,YB ) = 0), is
unable to account for the fact φ(YA,YB ) > 0. And although the normative model correctly predicts that φ(YA,YB |x1)
< 0, it sharply overestimates the magnitude of that effect. Once again, we see that the mutation sampler but not the
normative model accounts for the independence violations and the too-weak explaining away exhibited by human
reasoners.

4.2.2 | Common Cause Condition

Fig. 8A presents how participants allocated the 50 coins to the eight states of a common cause graph. Fig. 8A presents
the fits of the normative model and the mutation sampler these data.9 Although the mutation sampler achieved a
better fit than the normative model (sum of squared error of 17.5 vs. 25.0), that improvement was not sufficient to
yield a better fit for the mutation sampler correcting for it’s extra parameter (AIC of 914.4 vs. 805.4).

Nevertheless, just as in the common effect condition we derived statistical measures characterizing the joint,
which are presented averaged over participants in Fig. 8B. That φ(X ,Yi ) >> 0 (i.e., that X was viewed as posi-
tively correlated with the Y s) indicates that participants understood that X was a generative cause of the Y s. That
φ(YA,YB ) >> 0 (i.e., that theY s were viewed as positively correlated with each other) indicates that participants cor-
rectly understood that, in a common cause graph, oneY predicts another. The final coefficient in Fig. 8B, φ(YA,YB |X ),
represents the degree to which the Y s were viewed as positively correlated conditioned on X .10 The Markov con-
dition associated with causal graphical models of course stipulates that the Y s are independent conditioned on X ,
that is, that φ(YA,YB |X ) = 0. Participants in this condition judged instead that φ(YA,YB |X ) > 0, t (59) = 3.60, p <
.001. That is, the violation of independence between two effects supposedly screened off by their common cause,
observed earlier in people’s causal inferences (Fig. 4A), is also observed here in their distributions of the coins. The
phi coefficients derived from the model fits in Fig. 8B shows that the mutation sampler but not the normative model
can account for the fact that φ(YA,YB |X ) > 0.

As in the previous sections, we fit the alternative sampling models to both the common cause and common effect
conditions. Table 2 indicates that the mutation sampler yielded a better fit than the alternative sampling models. The
Supplementary Materials presents fits of each sampler to the current common effect condition.

9The best fitting parameters for the normative model were c = .510,m = .556, and b = .285. Those for the mutation sampler were c = .472,m = .466, b =

.323, and λ = 8.3.
10φ(YA,YB |X ) was computed as the average of the cases where X was present, φ(YA,YB |x1), and absent, φ(YA,YB |x0).
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F IGURE 8 Results from the common cause condition. (A) Fits of the mutation sampler (red line, open plot points)
and normative (blue line, closed plot points) are presented superimposed on participant’s distribution of coins (gray
bars). (B) Phi coefficients derived from participant’s judgments in the common effect condition along with those
derived from corresponding mutation sampler and normative model fits. Error bars denote 95% confidence intervals.

4.2.3 | Discussion

The results of this experiment confirm that the distortions introduced by mutation sampling—distortions we have
implicated as the source of the errors that obtain during causal reasoning, categorization, and interventions—can
be observed directly in participants’ own generated samples. We do not wish to claim that the mental processes
invoked by a task that requires explicit construction of a causal sample corresponds exactly to those involved in these
earlier judgments. Nonetheless, it is striking that the distributions that participants judged to be representative of
causal graphs exhibited the same statistical properties—independence violations and weak explaining way—shown
earlier. That the phenomena predicted by the mutation sampler manifest themselves on such a variety of judgments
suggests that it has implications not just for specific tasks but for causal cognition more generally.

5 | GENERAL DISCUSSION

Although causal graphical models have enjoyed success in modeling causal cognition, less work has investigated the
cognitive processes by which such sophisticated judgments are made. We have introduced a rational process model
that generates samples from a causal system upon which many causal-based judgments can be based. Overall, we
found that the mutation sampler yielded a better fit across a diverse array of experimental conditions that tested
a large number of participants. First, we found that the mutation sampler provided a better account of conditional
reasoning judgments, a heavily studied task within the causal graphical model framework. We then assessed the
performance of the mutation sampler on two additional tasks—categories with causal structure and interventions.
Past work has emphasized the success of causal graphical models in these domains but we showed that the biases to
joint distributions induced bymutation sampling also manifest themselves on these additional judgment types. Finally,



22 Davis & Rehder

we confirmed the predictions of the mutation sampler using a new methodology that assessed, in a relatively direct
way, people’s causal representations.

The mutation sampler instantiates four key principles of the process of drawing causal inferences, all of which are
necessary to reproduce people’s judgments. Principle 1 is that people reason about concrete cases, rather than directly
instantiating a full joint distribution. Dropping this principle would involve exact Bayesian inference, which we have
shown does not match people’s judgments. Principle 2 states that people only make small adjustments to the concrete
cases that they are considering. We showed that a sampling model that relaxes Principle 2—the egalitarian sampler—
was unable to fully fit people’s causal judgments. Principle 3 stipulates that people begin sampling from prototype
states. A model without this principle—the unbiased sampler—also did not account for subjects’ causal judgments
as well as the mutation sampler. Finally, Principle 4 proposes that people have limited cognitive resources and thus
take some small number of samples. Because the mutation sampler asymptotically approaches the normative joint
distribution, dropping Principle 4 would result in behavior indistinguishable from the normative model (and therefore
poorly matching people’s behavior).

Below we first consider some of the properties of a sampling approach to causal reasoning. We first discuss al-
ternative sampling algorithms and the constraint of cognitive efficiency that any process model is obligated to satisfy.
The mutation sampler is then compared to some alternative accounts of causal reasoning. We then consider some
phenomena in causal cognition that are unaddressed by computational level models (such as causal graphical mod-
els) but potentially explainable by a process model such as the mutation sampler, including the variability in causal
judgments, individual differences, and reaction times. We close with a discussion of generalizations to the mutation
sampler to causal scenarios that have received relatively less empirical study.

5.1 | Summary of Sampling and Causal Inference

5.1.1 | Other Sampling Algorithms

Earlier we noted that there are other possible sampling algorithms that would behave similarly to our model. For
example, the mutation sampler shares many similarities with another Markov Chain Monte Carlo algorithm: the Gibbs
sampler (Casella and George, 1992). The Gibbs sampler operates by selecting a single node to resample according
to its conditional probability given the values of all other nodes. This process is similar to the mutation sampler’s
selection of a single node to flip and comparison of the probability of the two states. The most common form of
Gibbs sampler is a block Gibbs sampler, where all nodes are sequentially resampled to get the new state. However, we
make a slight modification to the Gibbs sampler by updating the state after each resampling, and not requiring that all
nodes are resampled in turn. This small adjustment to a Gibbs sampler, along with initializing it at the prototype states,
implements all four of our key principles: concrete cases, limited sampling, biased starting points, and a ‘neighbors’
proposal distribution.11

We fit our altered Gibbs sampler to the conditional probability and categorization data from Sections 3.1 and
3.2, and found remarkably similar results, from quality of fit to parameter estimates such as causal strength (details
available from the authors). In fact, the two models exhibited consistent variation from each other only in the number
of samples required to fit people’s behavior. The mutation sampler was able to fit participant’s judgments with fewer
samples than the Gibbs sampler, a result of the increased efficiency of the MH sampling algorithm. Although the data
as it stands cannot distinguish between these two models, both are clearly preferred over the normative model. For

11While the two models share many commonalities, they are not identical. The transition probabilities the modified Gibbs sampler defines, a(q′ |q ) = π(v ′
i
|ui ),

are distinct from those of the mutation sampler, a(q′ |q ) = min(1, π(v ′
i
|ui )/π(vi |ui )).
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this reason we take these findings as support for our key principles, regardless of choice of the particular MCMC
algorithm.

5.1.2 | Efficiency

Asmentioned, we believe that people generally exhibit an impressive ability to reason causally, a fact that explains why
the causal graphical model framework has enjoyed success inmodeling causal cognition. Any processmodel purported
to account for this phenomenon is therefore constrained to postulate cognitive mechanisms whose resource demands
are within reach of most human reasoners for most causal based judgments. For this reason we believe it is important
to emphasize again that the mutation sampler constructs samples in a manner that is computationally efficient and so
psychologically plausible. TheMetropolis-Hastings rule combinedwith the proposal distributionwe advocate requires
computing the relative likelihood of two graph states that differ by one variable, excluding variables not in the variable’s
Markov blanket. Appendix A demonstrated that this computation can be reduced to simple expressions involving the
probabilities that define how variables are generated from their parents, probabilities that are assumed to already be
explicitly represented as part of a causal graphical model.

Another aspect of efficiency of course concerns the size of the representations that are required. A well-known
advantage of causal graphical models is that, by only encoding the local dependencies between variables and their
parents, they avoid the exponential explosion in the space required if causal systems were represented as full joint
distributions. Of course, the purpose of themutation sampler is to approximate that joint distribution, which raises the
question of whether drawing inferences via sampling reintroduces the problem of unrealistic space requirements that
causal graphical models were intended to solve in the first place. However, note that sampling needs to represent
not all network states but rather only those that are visited (i.e., sampled). For example, if one runs the mutation
sampler on the five variable graph of Fig. 2 (which has 25 = 32 distinct states) with chain lengths of 6, 12, 24, and
36 under the same parameterization specified in Appendix A, the average number of distinct network states that are
actually sampled are 2.9, 4.9, 7.8, and 10.0, respectively. This exercise reveals that a psychologically plausible amount
of sampling is accompanied by psychologically plausible memory requirements. Later we will provide evidence that
the small number of sampled network states results in variability that qualitatively matches that of participants.

Additional efficiencies are possible depending on the type of judgment a reasoner is faced with. Although the
approach here has been to use the mutation sampler to estimate a joint distribution, which is then used to derive pre-
dictions for a specific task, the full joint distribution is often unnecessary. For example, when estimating a conditional
probability, sampling the part of a causal network’s state space in which the query’s antecedent is false is a waste
of cognitive resources. To investigate this opportunity for further optimization, we defined an alternative version
of the mutation sampler. Whereas in the mutation sampler’s proposal distribution each mutated state has an equal
chance of being proposed, in the alternative sampler those network states in which a conditional probability query’s
antecedent is true are ten times more likely to be proposed than those in which it is false. This modification means
that sampling is strongly biased towards that part of the network’s state space needed for the computation of that
conditional probability. Appendix F confirms that, for the network in Fig. 2, the rate at which conditional probability
queries estimated via sampling converge to the true conditional probabilities is faster for this alternative sampler as
compared to the standard mutation sampler. Indeed, for those particular queries the average accuracy achieved by
the mutation sampler in 12 samples was matched by the alternative sampler after only 5.8 samples. Of course, com-
puting conditional probabilities via sampling is also highly space efficient, because one need not remember visited
network states at all. Rather, one only need keep a tally of the number of visited states that satisfy the antecedent
and, of those, the number that satisfy the consequent (and then divide the latter by the former).
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We have assumed throughout that reasoners generate a new chain of samples in response to each causal-based
query, a strategy especially appropriate for “one shot” (non repeated) causal judgments. However, when a number
of such judgments are posed in close temporal proximity (as in the typical causal reasoning experiment), the samples
generated for old judgments could potentially be reused to answer new ones. Indeed, one conjecture is that sampling
is common early in an experimental session but gradually becomes less common as judgments start being made on
the basis of (possibly an aggregation of) previous samples stored in memory. Responding on the basis of stored chains
of samples would be another potential sources of efficiency, and there is evidence that people use amortization in
some judgments (Dasgupta et al., 2018). On the other hand, sharing chains across causal queries will be less likely if,
as described above, those chains are generated in a manner that is specific to each query (e.g., are constrained to be
consistent with the antecedent of a conditional probability query).

5.2 | Alternative Models

5.2.1 | Beta-Q

As alluded to earlier, one model that shares some important similarities with the mutation sampler is Rehder’s (2018)
beta-Qmodel. Like themutation sampler, beta-Q proposes that people draw inferences on the basis of non-normative
joint distributions and, moreover, that it is the homogeneous “prototype” states that are over-represented in those
distributions. That the joints defined by the two models share these properties of course means that they make many
of the same predictions. For example, both models not only predict the basic independence violations and weak
explaining away results documented by numerous investigators (e.g., those shown earlier in Fig. 4), but also some
newer phenomena reported in Rehder (2018), such as the fact that independence violations arise even when causal
inferences are screened off by three variables. In fact, the data sets from Rehder (2018) comprised six of the causal
reasoning conditions successfully fit by the mutation sampler and one particular result from that study was cited as
support for the mutation sampler’s proposal distribution (see Appendix C).

However, an important difference between the models is that whereas beta-Q is a descriptive account, we ad-
vocate the mutation sampler as a process level account of the mental operations that underlie causal judgments. For
example, the distortions to a normative joint distribution stipulated by beta-Q were defined in terms of energy func-
tions that were, in essence, added to a normative joint in order to achieve the needed distortion. But although beta-Q
replicated participants’ behavior, it provides no explanation of why joint distributions are distorted in that manner (or
at all). In contrast, the mutation sampler provides an explanation for why those distributions might arise, namely, as a
result of a mental sampling process that is limited and constrained to commence at certain easily imagined network
states. For these reasons, we believe that the mutation sampler can be viewed as the process level implementation of
the computations specified by beta-Q.12 Of course, as a process model the mutation sampler has the potential to also
account for some of the behaviors we discuss below (e.g., reaction times) that are outside the purview of descriptive
models like beta-Q.

12The beta-Q model includes a parameter q that determines the degree of distortion to the joint distribution, where larger distortions are implied by large
values of q (and no distortion is implied when q = 0). Thus, q is inversely related to the chain length defined by the mutation sampler (where longer chain
lengths imply more veridical joint distributions). In fact, we have established that chain lengths in the range [2, 7] yield causal inferences that are virtually
identical to those generated by beta-Q with q in the range [1.33, 0.50]
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5.2.2 | Quantum Probability Models

Recently, Trueblood et al. (2017) applied quantum probability theory (QP) to some of the causal reasoning phenomena
considered here. Whereas in classic probability theory probabilities are computed as subsets (of a joint probability
distribution), in QP events are represented as subspaces and probabilities are computed by taking the inner product
of vectors within those spaces. One key factor that determines QP probabilities is the dimensionality of the repre-
sentational space deemed appropriate for a domain. When all N (binary) domain variables are compatible, then the
dimensionality of the space is 2N and QP can yield classic probabilities. But incompatible variable pairs result in a
reduction in dimensionality (to 2 in the extreme case in which all pairs are deemed incompatible). This reduction
addresses the exponential growth in space requirements alluded to above but at the cost of introducing so-called
quantum effects, probabilities that do not necessarily honor the properties of classic probability theory. For example,
QP interprets conjunctive probabilities in terms of a sequence of vector operations. Because p(X ,Y ) and p(Y ,X )
involve distinct sequences of such operations, in low dimensionality spaces commutativity in which p(X ,Y ) = p(Y ,X )
need not hold.

One strength ofQP is that it provides a natural account of order effects. For example, if p(Z |X ,Y ) is interpreted as
p(Z |X thenY ) (i.e., one first learns that X and then thatY ), then QP potentially accounts for the finding that the order
of X andY matters (i.e., that p(Z |X thenY ) , p(Z |Y thenX ). In fact, Trueblood et al. (2017) found order effects in a
causal reasoning task such that more recently presented information was weighed more heavily (also see Trueblood &
Busemeyer, 2012). They also found that appropriately parameterized QP models could reproduce Markov violations
and weak explaining away, phenomena we have taken here as evidence for the mutation sampler.

Although QP is a potentially important contribution to the understanding of human probabilistic reasoning, as
presently formulated its application to causal reasoning is incomplete. Thus far, QP has only been applied to one
causal network topology (a three-variable common effect network, Trueblood & Busemeyer, 2012; Trueblood et al.,
2017). More generally, no principles have been specified that determine which variables in a causal network should
be treated as compatible or incompatible (and thus the dimensionality of the space) as a function of their causal
roles. As a result, QP makes no a priori predictions regarding how, for example, judgments should differ between a
common effect and a common cause network. The asymmetries in human judgments elicited by these two network
topologies have provided key evidence in favor of the causal graphical model framework. Similarly, within a QP space
no principles guide the values of free rotation parameters (that determine the relations between the basis vectors that
represent incompatible variables) as a function of, say, the strengths of the causal relations (and thus QP makes no a
priori predictions that stronger causal relations should support stronger inferences). Finally, and most importantly for
present purposes, QP is fundamentally a descriptive model of the causal reasoning phenomena investigated here. Just
like beta-Q, QP specifies computations that are intended to reproduce human causal inferences without specifying
how those computations are carried out. In contrast, the goal of the mutation sampler is to describe not only what
causal inferences people draw but also how they do it.

5.2.3 | Mental Models Theory

The mutation sampler also shares some similarities with mental models theory (MMT) (Johnson-Laird, 1980). Both
models posit that the fundamental units of reasoning are concrete possibilities and give special status to certain states
(which in MMT are referred to as initial mental models). A more recent instantiation of MMT even defines a sampling
process in which possibilities (i.e., mental models) are stochastically generated (Johnson-Laird et al., 2015; Khemlani
et al., 2014). On this account, reasoners sample (with probability ε) from either the set of initial models or the set of
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fully explicit models (i.e., all models that are logically consistent with the premises). Model sampling continues until
the number of models matches a number drawn from a Poisson distribution. Causal inferences are then drawn on the
basis of the sampled models.

Despite these superficial similarities however, the mutation sampler and MMT differ in a number of important
ways. One is that they posit different initial states.13 A more fundamental difference is that states in MMT are
qualitative possibilities consistent with the causal claims and as such do not have probabilities associated with them.
Although probabilities can be derived from the sampled models (see Johnson-Laird et al., 2015), the manner in which
those probabilities are computed treats the possibilities as equiprobable. For example, for the causal claim “insulting
Adam causes Bethany to be angry”, MMT stipulates that the fully explicit models are

• Adam was insulted and Bethany was angry
• Adam was not insulted and Bethany was angry
• Adam was not insulted and Bethany was not angry

This set of models implies that Bethany is angry two-thirds of the time, that the chance that Bethany is angry
conditioned on Adam not being insulted is one half, and so forth. In contrast, we believe that when making such
judgments human reasoners naturally take into account, for example, their beliefs about how often Bethany tends to
be angry and the strength of the causal linkage between the insulting of Adam and Bethany’s resulting anger. This
intuition is reflected by the mutation sampler’s fundamentally probabilistic representations that reflect variables’ base
rates, the strengths of the causal relations, and so forth. These factors influence causal judgments via the computation
of the relative probability of states that occurs during the computation of Metropolis-Hastings transition probabilities.

These differences result in themodels making different predictions for a number of key causal judgments. For one,
MMT agrees with the normativemodel, and disagrees with themutation sampler, by positing the absence of screening
off errors in a common cause structure. As demonstrated earlier, there is overwhelming evidence that people do in
fact exhibit Markov violations in common cause networks. According to Ali et al. (2011), MMT predicts no explaining
away, a foundational signature of causal reasoning (Rottman and Hastie, 2014).14 In contrast, the mutation sampler
can predict explaining away judgments, although weaker than those stipulated by the normative model. Another
important difference between models of course is that the mutation sampler but not MMT is an example of a rational
process that approximates the normative standard to the extent that sufficient cognitive resources are available.

13The initial states specified by the mutation sampler — the prototype states in which variables are either all present or all absent — do not generally cor-
respond to either the initial or fully explicit mental models specified by MMT. For example, for the common cause network YA ← X → YB the initial
models are {y 1

A
x1y 1

B
}, that is, the single state in which all variables are present. The set of fully explicit models is formed by adding the logically possible

states in which X is absent, resulting in {y 1
A
x1y 1

B
, y 0
A
x0y 0

B
, y 1
A
x0y 0

B
, y 0
A
x0y 1

B
, y 1
A
x0y 1

B
}. For the common effect network YA → X ← YB the initial

models are {y 1
A
x1y 1

B
, y 1
A
x1, x1y 1

B
} (in initial models only true states are represented, e.g. in model y 1

A
x1 the state ofYB is omitted rather than explicitly

represented as false). The set of fully explicit models is formed by instantiating omitted states and adding the states in whichYA andYB are absent, resulting
in {y 1

A
x1y 1

B
, y 1
A
x1y 0

B
, y 0
A
x1y 1

B
, y 0
A
x0y 0

B
, y 0
A
x1y 0

B
}. See Ali et al. (2011) for additional discussion. Note that the fact that the initial models for common

cause and common effect networks differ illustrates MMT’s assumption that even casual reasoners (those that reason on the basis of initial models alone)
are sensitive to the direction of the causal links. In contrast, the mutation sampler assumes that initial states are independent of network topology.

14Although whether MMT predicts explaining away depends on exactly what models are represented. Ali et al.’s (2011) predictions were derived assuming
that reasoners’ initial models include a representation of the existence of other models, as denoted by the presence of ellipses alongside the initial models.
Ali et al. argue that including those potential additional models in the calculation of conditional probability results in the absence of explaining away. In
contrast, Johnson-Laird (personal communication, August, 15, 2018) notes the explaining away is predicted if the initial models are considered in isolation.
Note that on the basis of full models, MMT predicts the absence of explaining away.
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5.2.4 | Accounts Based on Prior Knowledge

Finally, it is worth noting that there exist alternative types of explanations of some of the causal reasoning errors we
focus on here. In particular, it has often been argued that apparent causal reasoning errors arise because subjects were
reasoning with knowledge in addition to that assumed by the experimenters. For example, Rehder and Burnett (2005)
suggested that independence violations arise when variables are features of categories because people believe that
many categories possess underlying causal processes that bring rise to observed features (Medin and Ortony, 1989;
Gelman, 2004). When instructed on a common cause structure such as the one in Fig. 4A (i.e.,YA ← X →YB ), Park and
Sloman (2013, 2014) observed that reasoners were less likely to treat the Ys as independent conditioned on X when
the X → YA and X → YB causal relationships were viewed as sharing underlying mechanism and, moreover, that is,
that is normative to do so (because, e.g., the presence of an unobserved factor that disables bothX →YA andX →YB

renders the Ys dependent conditioned on X; also see Hausman & Woodward, 1999; Mayrhofer & Waldmann, 2015;
Rehder, 2014; Walsh & Sloman, 2004). For a common effect structure such as the one in Fig. 4B (i.e.,YA → X ←YB ),
explaining away is predicted if reasoners interpret YA → X and YB → X as operating independently and integrate
according to a noisy-or but not if they believeYA andYB bring about X conjunctively instead (Rehder, 2015).

It is also possible that prior knowledge was responsible for the Markov violations in the intervention studies
presented earlier. Predictions derived from causal graphical models for interventions rely on Pearl’s notion of graph
surgery (Pearl, 2000), which assumes ideal interventions that remove all correlations between a variable and its causes.
In contrast, prior domain knowledge might suggest that interventions are not ideal. For example, inoculating a patient
dramatically decreases their probability of getting a disease but does not render it absolutely impossible. Thus, inter-
ventions that are viewed as non-ideal may have also contributed to the independence violations in those studies.

What such accounts have in common is that they rationalize causal reasoning errors by noting that they may no
longer be errors if the subjects’ prior knowledge of the situation, rather than the experimenters’, is taken into account.
However, whereas reasoners in some past studies may have indeed made use of extra-experimental knowledge, work
usingmore advancedmethodologies (e.g., full counterbalancing ofmaterials, use of “blank”materials inwhich variables
were simply referred to as “A,” “B,” etc.) that control for this possibility has shown that some of these errors persist
nonetheless (e.g., Rehder, 2014; Rottman &Hastie, 2016; see Rehder, 2018 for an extensive discussion of the account
of causal reasoning errors provided by prior knowledge). Rather than positing alternative interpretations of causal
knowledge on a case by case basis (disablers for common cause networks, conjunctive causes for common effect
networks, non-ideal interventions, etc.), themutation sampler provides a parsimonious account of the reasoning errors
that arise with both a large number of causal network topologies and several types of causal-based judgments.

5.3 | New Empirical Questions

The primary focus of most studies of causal reasoning, including this one, has been on what causal inferences people
draw and, in some instances, whether those inferences should be considered normative. By additionally asking how
those inferences are drawn, we hope that the mutation sampler will expand the kinds of research questions that are
posed and the kind of data that is considered. We now present a number of examples of these.

5.3.1 | Variability in Causal Judgments

One avenue of future research concerns the variability inherent in causal judgments. Although little past research
has addressed this question, the recent study by Rottman and Hastie (2016) reported not only the mean responses
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to conditional probability queries but also histograms of those responses. For example, Fig. 9A shows the histograms
of responses to queries associated with a three variable common cause network like the one in Fig. 4A from their
Experiments 1A and 1B.15 The first two columns are labeled “Markov” because they are queries relevant to evaluating
independence violations, namely, p(y 1

i
|x1y 0

j
) and p(y 1

i
|x1y 1

j
). The third and fourth columns presents what Rottman

and Hastie referred to as “middle” inferences (an inference to the “middle” X variable, i.e., p(x1 |y 1
A
y 1B )) and “transitive”

inferences (i.e., p(y 1
i
|y 1
j
)), respectively. In the figure, participants’ ratings have been scaled into the range 0 to 1. A

striking feature of Fig. 9A is the large variability associated with each type of response. For example, the range that
encompassed 95% of responses to the straightforward p(y 1

i
|y 1
j
) query was [.19, .96].

Fig. 9B presents the corresponding histograms generated by the mutation sampler assuming a causal strength of
mean (0.750, .875), a background strength of mean (.250, .125), and a chain length of 36. Note that whereas the pre-
dictions of the mutation sampler presented earlier in this paper were derived by computing the expected value of a
joint distribution for a given chain length (and then the corresponding conditional probabilities), those in Fig. 9B were
computed by actually running the sampler 100,000 times. The figure shows that the predictions of the mutation sam-
pler exhibits variability comparable to that of Rottman and Hastie’s participants. It also tends to reproduce an unusual
feature of their data, which is the presence of “spikes” in the histograms at .50. Such spikes, which might represent
uncertainty in the mind of reasoners when reasoning about network states that have apparent inconsistencies (e.g.,
in p(y 1

i
|x1y 0

j
), the common cause X is present but its effectYj is absent) or include variables with unspecified values

(e.g., in p(y 1
i
|y 1
j
) the state of X is unspecified). Interestingly, the mutation sampler predicts 0.50 for conditional prob-

ability queries when the networks states that are involved in the calculation have not been visited by the stochastic
sampling process and thus are at their initialized value.16 A question for future research concerns whether Fig. 9A re-
flects within or between participant variability. Assuming that each conditional probability judgment involves another
run of the mutation sampler, it predicts both within and between participant variability.

15We thank Ben Rottman for providing the data from these studies. Experiments 1A (N = 102) and 1B (N = 110) were identical except that the strengths of
the causal relations between X and theY s (which were conveyed by participants observing individual cases) were 0.750 and .875, respectively, whereas the
strength of alternative causes of theY s were .250 and .125. We collapse across these similar studies in order to obtain a better estimate of the distribution
of participants’ responses (one based on N = 212).

16Recall from Section 2.5 that the number of visits to each network state is initialized to 10−10 . Using p(y 1
i
|x1y 0

j
) as an example, note that p(y 1

i
|x1y 0

j
) =

p(x1y 1
i
y 0
j
)/[p(x1y 1

i
y 0
j
)+ p(x1y 0

i
y 0
j
)] and that states x1y 1

i
y 0
j
and x1y 0

i
y 0
j
are each unlikely states (because in both X is present butYj is absent) and so

may not be sampled. When they aren’t, p(y 1
i
|x1y 0

j
) = 10−10/[10−10 + 10−10] = 0.50.
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F IGURE 9 (A) Distribution of empirical ratings from Experiments 1A and 1B of Rottman and Hastie (2016). The
first two columns present “Markov” inferences (p(y 1

i
|x1y 0

j
) and p(y 1

i
|x1y 1

j
)), the third column presents “middle”

inferences (p(x1 |y 1
A
y 1B )), and the fourth presents “transitive” inferences (p(y 1

i
|y 1
j
)). The responses have in fact been

collapsed over a number of different types of conditional probability queries that were considered equivalent for the
purpose of the theoretical questions Rottman and Hastie addressed. For example, the ratings in the first column
includes responses to both p(y 1

i
|x1y 0

j
) and p(y 1

i
|x0y 1

j
), where the latter rating was first flipped around the midpoint

of the scale (0.50). Likewise, the second column includes p(y 1
i
|x1y 1

j
) and the flipped responses to p(y 1

i
|X 0y 0

j
), the

third includes p(x1 |y 1
A
y 1B ) and the flipped responses to p(x1 |y 0

A
y 0
B
), and the fourth includes p(y 1

i
|y 1
j
) and the flipped

responses to p(y 1
i
|y 0
j
). (B) The corresponding distributions generated by the mutation sampler.

5.3.2 | Individual Differences

There is also evidence for the presence of systematic differences in how individuals draw causal inferences. For
example, Rehder (2014) found that the causal inferences of a substantial minority of subjects exhibited no sensitivity
to causal direction (treating, for example, common cause and common effect networks equivalently). These subjects,
who Rehder dubbed associative reasoners, committed a large number of Markov violations.

Trueblood et al. (2017) also found differences in themagnitude ofMarkov violations and, moreover, that those vio-
lations correlatedwith othermeasures, such as themagnitude of order effects (i.e., the difference between p(Z |X thenY )
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and p(Z |Y thenX )) and measures they referred to as reciprocity and memorylessness. These measures in turn corre-
lated with subjects’ performance on the Cognitive Reflection Test (CRT), which is purported to measure differences in
reasoners’ tendency to emit intuitive versus deliberative responses (Frederick, 2005). That low CRT subjects commit-
ted more causal reasoning errors was interpreted by Trueblood et al. as reflecting their tendency to adopt quantum
probability representations with low dimensionality, which in fact tend to generate Markov violations, order effects,
reciprocity, and memorylessness.

In the context of the mutation sampler, an obvious prediction is that individuals with a larger working memory
capacity (and thus a better capacity to generate andmaintain long sample chains) might exhibit fewer causal reasoning
errors. Indeed, it has been shown that larger working memory capacity correlates with “analytical” thinking more
generally (Evans & Over, 2013; Feeney, 2007; Stanovich & West, 1998; Stanovich, 1999). The fact that Markov
violations correlatewith theCRT (Trueblood et al., 2017), which in turn correlateswithmeasures of general intelligence
(Frederick, 2005; Toplak et al., 2011), lends credence to this possibility. A related prediction would be larger causal
reasoning errors for participants under working memory load.

5.3.3 | Reaction Times

Although reaction times have received relatively little attention in the causal reasoning literature, time pressure has
been shown to increase people’s tendency to emit intuitive versus deliberate responses in reasoning more generally
(e.g., Evans & Curtis-Holmes, 2005; Evans et al., 2009; Finucane et al., 2000; Roberts & Newton, 2001). A predic-
tion readily derivable from the mutation sampler is that time pressure will limit the number of samples and thus the
accuracy of the inferences drawn. One study that addressed this question in a preliminary way is that of (Rehder,
2014), who manipulated whether or not subjects were give a deadline to respond. In fact, Rehder found no impact of
response deadlines on the magnitude of Markov violations. For a number of reasons however, this question deserves
additional study. For one, the task in (Rehder, 2014) was a relatively complex one in which subjects had to choose
which of two scenarios was more likely to display a particular variable and this need to compare may have affected the
mental processes invoked. It is also possible that the deadline used was not sufficient to induce the pressure needed
to affect the subjects’ sampling process.

5.3.4 | Generalizing to Additional Causal Scenarios

One strength of the current work is that it has tested the mutation sampler on a relatively large number of judgment
types and causal network topologies. Yet, one limitation of those tests is that the causal networks only involved
generative causal relations. This limitation allowed us to present a simplified view of prototypes states. Recall that
we justified prototypes as plausible states at which to commence sampling because they are easily identifiable as
consistentwith the causal relations on the basis of a qualitative analysis of the causal network, namely, one that ignores
the strength, direction, and functional form of the causal relations. Applying that justification to networks with only
generative relations yields prototype states in which binary variables are all present or all absent, an assumption made
in all the model fitting reported above. However, applying the justification to networks that also include inhibitory
causal relations may yield different prototypes. For example, compare the two three-variable chain networks in panels
A andB of Fig. 10. The chain in panel A has generative causal relations and so the usual prototypes (variables all present
or all absent). For this network, the chart in Fig. 10A shows that the mutation sampler yields a Markov violation in
the usual direction: the probability of Z = 1 conditioned onY = 1 is greater when X is also present as compared to
when it is absent. (The predictions of the normative model, also shown in the chart, of course reflect independence:
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p(z 1 |x0y 1) = p(z 1 |x1y 1).) In comparison, in panel B the causal relation between Y → Z is inhibitory rather than
generative. For this network, our recipe for indentifying prototypes—identify states that are qualitatively consistent
with the causal relations—yields x1y 1z 0 and x0y 0z 1, that is, states inwhichY and Z have opposite values, befitting the
inhibitory relation between them. Importantly, although these prototypes also yieldMarkov violations the direction of
those violations might change. The chart in Fig. 10B shows that a mutation sampler supplied with prototypes x1y 1z 0

and x0y 0z 1 predicts that p(z 1 |x1y 1) will be less than instead of greater than p(z 1 |x0y 1).
Mixtures of generative and inhibitory relations can yield cases in which no prototypes are identifiable. Consider

the network in Fig. 10C. TheX →Y → Z subnetwork implies thatX and Z should have the same values in a potential
prototype whereas the X →W → Z subnetwork implies they should should have opposite values. Thus, there are
no prototype states that are qualitatively consistent with this network’s causal relations. In fact, the chart in Fig. 10C
shows that a mutation sampler that starts sampling at a randomly chosen system state (a.k.a., the unbiased sampler)
yields the virtual absence of an independence violation (p(z 1 |x0y 1) ≈ p(z 1 |x1y 1)). The novel predictions shown in
Fig. 10 are readily testable with additional empirical work.

The mutation sampler could also be applied to networks with continuous variables. Although most studies test
binary variables, Rottman and Hastie (2016) found that the same pattern of independence violations obtains with
continuous variables (e.g., in aYA ← X → YB common cause network, a larger value ofYA led to a larger estimate of
YB even when the state of X was known). Application of the mutation sampler to such cases would involve shifting
probability mass in the joint probability density function; application of the sampling model would involve starting
MCMC sampling at states in which X ,YA , andYB all have either high values or low ones.
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F IGURE 10 Visualization of different prototype states depending on causal structure, and resulting conditional
probability judgments for the normative model (blue) and mutation sampler (red) given those prototypes. For both
models, the marginal probability of the causes = .50, the strength of background causes = .33, and the causal
strength = .50 (where for inhibitory causal relations, causal strength refers to the probability of the cause preventing
the effect from occurring). Judgments for the mutation sampler were the expected values after 8 samples.
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5.3.5 | Empirical Learning of Causal Relations

Finally, many of the fits of mutation sampler presented in this article were to studies that simply instructed subjects on
the existence of causal relations without also presenting learning data that exemplified those relations. This raises the
question of how the sampling approach applies when such data is present. On one hand, studies that have presented
learning data have found that they are not sufficient to eliminate the errors we’ve considered here (e.g., Markov
violations, Rehder & Davis, 2016, Rehder & Waldmann, 2017; Rottman & Hastie, 2016, and Waldmann & Hagmayer,
2005). On the other, Rehder andWaldmann (2017) systematicallymanipulated the presence/non-presence of learning
data and found that those errors were reduced in magnitude and, moreover, disappeared entirely when subjects were
provided with data but not a verbal description of the causal relations. Overall, these results are consistent with our
conjecture that prototypes, because they are easily ascertained to be consistent with (a verbal description of) the
causal relations, naturally come to reasoners’ mind and so are likely to serve as a point to start a sampling chain. But
if learning data is also available then a previously observed system state could serve as the starting point instead,
ameliorating or eliminating the reasoning biases induced by the prototypes. In fact, there is evidence that people do
just such a thing in some circumstances (Dasgupta et al., 2018). Future experiments could test the possibility that
sampling commences at a previously observed system state by, for example, manipulating the probability that that
state was brought to mind just before a causal inference. This approach would be analogous to manipulating the
anchor in a traditional anchoring and adjustment experiment (Lieder et al., 2012; Tversky and Kahneman, 1974). The
mutation sampler could readily be used to predict subjects’ most likely causal inference as a function of which system
state the sampling chain was “anchored” on.

5.4 | Conclusion

The successes of the mutation sampler demonstrate that it can account for people’s generally good causal reasoning
performance while also explaining the systematic errors they make. Nevertheless, as a rational process model, the
mutation sampler embodies the view that humans could draw veridical causal inferences — if only they had the cog-
nitive resources to do so. The fault lies in the fact that causal judgments must be computed in finite time and with
limited resources. Errors in causal reasoning are thus an unavoidable consequence of the tradeoff between accuracy,
speed, and effort.

Although the causal graphical model framework has served as a useful characterization of causal cognition, less
work has investigated how such inferences can be drawn in a psychologically plausible manner. We have proposed
that causal judgments are based on a relatively small number of samples drawn from a causal system and applied
that approach to a large number of causal-based tasks, experimental conditions, and participants. We claim that the
mutation sampler strikes an appropriate balance between the fact that people largely succeed at making sophisticated
causal judgments while also committing systematic errors. And we have argued that the computations and represen-
tations required by mutation sampling are within the reach of most reasoners for most types of judgments. We hope
that the development of causal process models will expand the kinds of phenomena typically considered in the causal
cognition literature, including the variability of causal judgments, inter-individual differences in reasoning strategies,
and reaction times.

references
Ali, N., Chater, N. and Oaksford, M. (2011) The mental representation of causal conditional reasoning: Mental models or

causal models. Cognition, 119, 403–418.



34 Davis & Rehder

Anderson, J. R. (1990) The adaptive character of thought. Psychology Press.

Bramley, N. R., Dayan, P., Griffiths, T. L. and Lagnado, D. A. (2017) Formalizing neurath’s ship: Approximate algorithms for
online causal learning. Psychological review, 124, 301.

Burnham, K. P. and Anderson, D. R. (1998) Model selection and inference: a practical information-theoretical approach. New-
York: Springel-Verlag.

Casella, G. and George, E. I. (1992) Explaining the gibbs sampler. The American Statistician, 46, 167–174.

Cheng, P. W. (1997) From covariation to causation: a causal power theory. Psychological review, 104, 367.

Dasgupta, I., Schulz, E. and Gershman, S. J. (2017) Where do hypotheses come from? Cognitive psychology, 96, 1–25.

Dasgupta, I., Schulz, E., Goodman, N. D. and Gershman, S. J. (2018) Remembrance of inferences past: Amortization in human
hypothesis generation. Cognition, 178, 67–81.

Evans, J. S. B. and Curtis-Holmes, J. (2005) Rapid responding increases belief bias: Evidence for the dual-process theory of
reasoning. Thinking & Reasoning, 11, 382–389.

Evans, J. S. B., Handley, S. J. and Bacon, A. M. (2009) Reasoning under time pressure: A study of causal conditional inference.
Experimental Psychology, 56, 77–83.

Evans, J. S. B. and Over, D. E. (2013) Rationality and reasoning. Psychology Press.

Feeney, A. (2007) Individual differences, dual processes, and induction. Inductive reasoning, 302–327.

Fernbach, P. M. and Rehder, B. (2013) Cognitive shortcuts in causal inference. Argument & Computation, 4, 64–88.

Finucane, M. L., Alhakami, A., Slovic, P. and Johnson, S. M. (2000) The affect heuristic in judgments of risks and benefits.
Journal of behavioral decision making, 13, 1–17.

Frederick, S. (2005) Cognitive reflection and decision making. Journal of Economic perspectives, 19, 25–42.

Gelman, S. A. (2004) Psychological essentialism in children. Trends in cognitive sciences, 8, 404–409.

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. and Tenenbaum, J. B. (2010) Probabilistic models of cognition: Exploring
representations and inductive biases. Trends in cognitive sciences, 14, 357–364.

Griffiths, T. L., Lieder, F. and Goodman, N. D. (2015) Rational use of cognitive resources: Levels of analysis between the
computational and the algorithmic. Topics in cognitive science, 7, 217–229.

Griffiths, T. L. and Tenenbaum, J. B. (2005) Structure and strength in causal induction. Cognitive psychology, 51, 334–384.

Hagmayer, Y. (2016) Causal bayes nets as psychological theories of causal reasoning: evidence from psychological research.
Synthese, 193, 1107–1126.

Hastings, W. K. (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika, 57, 97–109.

Hausman, D. M. and Woodward, J. (1999) Independence, invariance and the causal markov condition. The British journal for
the philosophy of science, 50, 521–583.

Hertwig, R. and Pleskac, T. J. (2010) Decisions from experience: Why small samples? Cognition, 115, 225–237.

Johnson, J. G. and Busemeyer, J. R. (2016) A computational model of the attention process in risky choice. Decision, 3, 254.

Johnson-Laird, P. N. (1980) Mental models in cognitive science. Cognitive science, 4, 71–115.



Davis & Rehder 35

Johnson-Laird, P. N., Khemlani, S. S. and Goodwin, G. P. (2015) Logic, probability, and human reasoning. Trends in cognitive
sciences, 19, 201–214.

Khemlani, S. S., Barbey, A. K. and Johnson-Laird, P. N. (2014) Causal reasoning with mental models. Frontiers in human neuro-
science, 8, 849.

Koehler, D. J. (1994) Hypothesis generation and confidence in judgment. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 20, 461.

Koller, D. and Friedman, N. (2009) Probabilistic graphical models: principles and techniques. MIT press.

Lagnado, D. A. and Sloman, S. (2004) The advantage of timely intervention. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 30, 856.

Lieder, F., Griffiths, T. and Goodman, N. (2012) Burn-in, bias, and the rationality of anchoring. In Advances in neural information
processing systems, 2690–2798.

Luhmann, C. C. and Ahn, W.-k. (2007) Buckle: A model of unobserved cause learning. Psychological review, 114, 657.

Marr, D. (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New
York, NY, USA: Henry Holt and Co., Inc.

Mayrhofer, R. andWaldmann, M. R. (2015) Agents and causes: Dispositional intuitions as a guide to causal structure. Cognitive
science, 39 1, 65–95.

Medin, D. and Ortony, A. (1989) Psychological essentialism. In Similarity and analogical reasoning (ed. A. Ortony). Cambridge
University Press.

Morris, M. W. and Larrick, R. P. (1995) When one cause casts doubt on another: A normative analysis of discounting in causal
attribution. Psychological Review, 102, 331.

Park, J. and Sloman, S. A. (2013) Mechanistic beliefs determine adherence to the markov property in causal reasoning. Cog-
nitive Psychology, 67, 186–216.

— (2014) Causal explanation in the face of contradiction. Memory & cognition, 42, 806–820.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier.

— (2000) Causality: models, reasoning and inference, vol. 29. Springer.

Perales, J. C., Catena, A. and Maldonado, A. (2004) Inferring non-observed correlations from causal scenarios: The role of
causal knowledge. Learning and Motivation, 35, 115–135.

Rehder, B. (2003a) Categorization as causal reasoning. Cognitive Science, 27, 709–748.

— (2003b) A causal-model theory of conceptual representation and categorization. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 29, 1141.

— (2014) Independence and dependence in human causal reasoning. Cognitive psychology, 72, 54–107.

— (2015) The role of functional form in causal-based categorization. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 41, 670.

— (2018) Beyond markov: Accounting for independence violations in causal reasoning. Cognitive psychology, 103, 42–84.

Rehder, B. and Burnett, R. C. (2005) Feature inference and the causal structure of categories. Cognitive Psychology, 50, 264–
314.



36 Davis & Rehder

Rehder, B. and Davis, Z. (2016) Evaluating causal hypotheses: the curious case of correlated cues. In CogSci, vol. 38. Cognitive
Science Society.

Rehder, B. and Hastie, R. (2001) Causal knowledge and categories: The effects of causal beliefs on categorization, induction,
and similarity. Journal of Experimental Psychology: General, 130, 323.

Rehder, B. and Kim, S. (2006) How causal knowledge affects classification: A generative theory of categorization. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 32, 659.

— (2008) The role of coherence in causal-based categorization. In Proceedings of the Annual Meeting of the Cognitive Science
Society, vol. 30.

— (2010) Causal status and coherence in causal-based categorization. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 36, 1171.

Rehder, B. and Waldmann, M. R. (2017) Failures of explaining away and screening off in described versus experienced causal
learning scenarios. Memory & cognition, 45, 245–260.

Roberts, M. J. and Newton, E. J. (2001) Inspection times, the change task, and the rapid-response selection task. The Quarterly
Journal of Experimental Psychology: Section A, 54, 1031–1048.

Rottman, B. M. and Hastie, R. (2014) Reasoning about causal relationships: Inferences on causal networks. Psychological
bulletin, 140, 109.

— (2016) Do people reason rationally about causally related events? markov violations, weak inferences, and failures of
explaining away. Cognitive Psychology, 87, 88–134.

Stanovich, K. E. (1999)Who is rational?: Studies of individual differences in reasoning. Psychology Press.

Stanovich, K. E. and West, R. F. (1998) Individual differences in rational thought. Journal of experimental psychology: general,
127, 161.

Toplak, M. E., West, R. F. and Stanovich, K. E. (2011) The cognitive reflection test as a predictor of performance on heuristics-
and-biases tasks. Memory & cognition, 39, 1275.

Trueblood, J. S. and Busemeyer, J. R. (2012) A quantum probability model of causal reasoning. Frontiers in Psychology, 3, 138.

Trueblood, J. S., Yearsley, J. M. and Pothos, E. M. (2017) A quantum probability framework for human probabilistic inference.
Journal of Experimental Psychology: General, 146, 1307.

Tversky, A. and Kahneman, D. (1974) Judgment under uncertainty: Heuristics and biases. science, 185, 1124–1131.

Van Ravenzwaaij, D., Cassey, P. and Brown, S. D. (2018) A simple introduction to markov chain monte–carlo sampling. Psy-
chonomic bulletin & review, 25, 143–154.

Von Sydow, M., Hagmayer, Y., Meder, B. and Waldman, M. R. (2010) How causal reasoning can bias empirical evidence. In
Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 32.

Vul, E., Goodman, N., Griffiths, T. L. and Tenenbaum, J. B. (2014) One and done? optimal decisions from very few samples.
Cognitive science, 38, 599–637.

Vul, E. and Pashler, H. (2008) Measuring the crowd within: Probabilistic representations within individuals. Psychological
Science, 19, 645–647.

Waldmann, M. R. and Hagmayer, Y. (2005) Seeing versus doing: two modes of accessing causal knowledge. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 31, 216.

— (2013) Causal reasoning.

Walsh, C. R. and Sloman, S. A. (2004) Revising causal beliefs. In Proceedings of the Annual Meeting of the Cognitive Science
Society, vol. 26.



Davis & Rehder 37

TABLE 3 Example Conditional Probability Distributions for the network in Fig. 2.

Mutated State of parent Conditional probability Conditional
variable variables expression probability
a1 cA .600
b1 cB .600
c1 a1b1 1 − (1 − bC )(1 −mAC )(1 −mBC ) .911

a0b1 1 − (1 − bC )(1 −mBC ) .733
a1b0 1 − (1 − bC )(1 −mAC ) .733
a0b0 bC .200

d 1 b1 1 − (1 − bD )(1 −mBC ) .733
b0 bD .200

e1 c1 1 − (1 − bE )(1 −mCE ) .733
c0 bE .200

6 | APPENDIX A: COMPUTING METROPOLIS-HASTINGS TRANSITION PROB-
ABILITIES

We present quantitative examples of Metropolis-Hastings ratios for the network in Fig. 2. Doing so requires assump-
tions regarding the functions that link causes to their effects. One possibility, which corresponds to the conditions in
the large majority of empirical studies that are considered later in this article, are that the causal links are generative
(a cause makes its effects more likely) and independent (each causal link operates autonomously) and that multiple
causal influences integrate according to a noisy-or function (Cheng, 1997). The generating function that defines the
probability of variableVi being present is then

π(v 1i |P a(Vi )) = 1 − (1 − bi )
∑

Vj ∈P a(Vi )

(1 −m j i )
i nd (Vj )

where P a(Vi ) denotes the parents ofVi ,m j i is the strength of the causal link between parent variableVj andVi , i nd (Vj )
is an indicator function that yields 1 ifVj is present and 0 otherwise, and bi is the effect of background causes onVi
(causal influences exogenous to the model). If variableVi is a “root” variable (i.e, has no causal parents), the probability
that it is present is given by parameter cVi . Note that the principle of causal sufficiency that accompanies causal
graphical models — that graph variables have no hidden causes in common — entails that root nodes are independent
of one another.

Table 3 presents the probabilities of each variable in Fig. 2 as a function of the state of its parents assuming that
the marginal probabilities of the root causes A and B (cA and cB ) are .60, that all causal relations (mAC ,mBC ,mBD , and
mAC ) have a strength of .67, and that the strength of the background causes for the remaining variables (bC , bD , and
bE ) is .20. The probabilities in Table 3 constitute what is referred to as the conditional probability distributions (CPDs)
for the network in Fig. 2 under the given parameterization.

CPDs may be derived from generating functions other than a noisy-or of course. For example, rather than serving
as independent causes of C in Fig. 2, A and B might be conjunctive causes such that both need to be present in order
to generate C.

π(c1 |ab) = 1 − (1 − bC )(1 −mABC )
i nd (A)i nd (B)
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wheremABC is the strength of the conjunctive causal relationship relatingA, B , andC . One empirical study considered
in Appendix C instructed subjects on conjunctive causal relationships.

A causal graph’s CPDs are sufficient to compute any marginal, conditional, and joint probability associated with
that graph. For example, the Markov condition associated with causal graphical models stipulates that the graph in
Fig. 2 factors such that p(abcde) = p(e |c)p(d |b)p(c |ab)p(a)p(b). Of course, any marginal and conditional probability
can be derived from the joint.

We now show how a causal graph’s CPDs are also sufficient to efficiently compute Metropolis-Hastings (MH)
transition probabilities. Consider the first example MH ratio in Fig. 2, π(ce′)/π(ce). Suppose that c1e0 holds in the
current state q and the value of E has mutated to 1 in the proposed state q ′. Noting that π(ce) = π(e |c)π(c), the MH
ratio can be computed from the CPDs in Table 3.

π(c1e1)

π(c1e0)
=
π(e1 |c1)π(c1)

π(e0 |c1)π(c1)
=
π(e1 |c1)

π(e0 |c1)
=
.733

1 − .733
= 2.75

Table 4 presents the MH ratios for the cases in which E mutates to 1 as a function of the two possible values of
C (c0 and c1).

The second example MH ratio in Fig. 2 is π(a′bc)/π(abc). Suppose that a0b1c0 holds in the current state q and
the value of A has mutated to 1 in the proposed state q ′. Noting that π(abc) = π(c |ab)π(a)π(b) and substituting in
the appropriate CPDs from Table 3,

π(a1b1c0)

π(a0b1c0)
=
π(c0 |a1b1)π(a1)π(b1)

π(c0 |a0b1)π(a0)π(b1)
=
π(c0 |a1b1)π(a1)

π(c0 |a0b1)π(a0)
=
(1 − .911)(.60)

(1 − .733)(1 − .60)
= 0.500

Table 4 presents the MH ratios for the case in which A mutates to 1 as a function of the four possible values of
B and C .

The third example MH ratio in Fig. 2 is π(abc′e)/π(abce). Suppose that a0b1c0e0 holds in the current state q
and the value of C has mutated to 1 in the proposed state q ′. Noting that π(abce) = π(e |c)π(c |ab)π(a)π(b) and
substituting in the appropriate CPDs from Table 3,

π(a0b1c1e0)

π(a0b1c0e0)
=
π(e0 |c1)π(c1 |a0b1)π(a0)π(b1)

π(e0 |c0)π(c0 |a0b1)π(a0)π(b1)
=
π(e0 |c1)π(c1 |a0b1)

π(e0 |c0)π(c0 |a0b1)
=
(1 − .733)(.733)

(1 − .20)(1 − .733)
= 0.917

Table 4 presents the MH ratios for the case in which C mutates to 1 as a function of the eight possible values of
A, B , and E .

These examples illustrate how MH transition probabilities can be computed from a graph’s CPDs. Notably, they
can be computed without the full joint probability distribution.

7 | APPENDIX B: CONVERGENCE PROPERTIES

This appendix justifies prototype states as a reasonable starting point given initial uncertainty about which states are
highly probable for any particular graph. One consequence of generative causal relationships is that they yield positive
correlations between variables. Thus, a reasonable first approximation of a graph’s joint distribution is one in which
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TABLE 4 Examples of Metropolis-Hastings Ratios.

State of Markov blanket MH Ratio
π(ce1)/π(ce0) c1 2.75

c0 0.25
π(a1bc)/π(a0bc) b1c1 1.86

b0c1 5.50
b1c0 0.50
b0c0 0.50

π(ac1be)/π(ac0be) a1b1e1 37.58
a1b1e0 3.42
a1b0e1 10.08
a0b1e1 10.08
a1b0e0 0.92
a0b1e0 0.92
a0b0e1 0.92
a0b0e0 0.08

graph states aremore probable to the extent they exhibit coherence, variables that exhibit the same value. According to
this approximation, prototype states are maximally coherent and thus serve as the best states at which to commence
sampling. In fact, we show that this strategy often results in faster convergence to the normative distribution as
compared to unbiased (uniformly randomly chosen) starting points. Of course, because cognitive resource limitations
preclude large number of samples, this result implies that biasing the starting point results in more accurate causal
inferences on average. Therefore, although the term “bias” may imply a maladaptive process, in fact it is consistent
with our claim that people are capable causal reasoners that commit small but systematic errors.

We randomly generated 360,000 directed acyclic graphs of five binary variables. The graphs were generated by
varying two factors—the strength and density of the causal relations—over 30 evenly spaced values from 0 to 1. A
density value determined the number of causal links that were randomly chosen from the 10 causal links that define
a five-variable network that is fully connected and includes no cycles. For example, the graph in Fig. 2 has four causal
relations and thus has a density of .40. Each cell in the 30 x 30 grid was sampled 400 times. In each graph, themarginal
probability of a root cause (a variable that has no parent) was set to 0.5 and the strength of alternative causes for each
non-root variable was set to 0.1. Together these factors define a normative joint distribution over the five variables
for each of the 360,000 graphs.

For each graph, two variants of the mutation sampler (biased or unbiased initialization) were then run with a chain
length of exactly eight. For each of these (sampled) distributions, the KL divergence between it and the normative
distribution was computed. Fig. 11 shows the square rooted difference in KL-divergence between the biased and
unbiased initialization for each parameter combination.17 Approximately 55% of the 360,000 runs resulted in faster
convergence (i.e. lower KL-divergence) for the biased initialization.

The figure shows that biased initialization converged faster in dense graphs with strong causal links, because in
such graphs the two prototypes will in fact be highly probable. In contrast, unbiased initialization converged faster in
sparse graphs with strong causal links because the sparsity of the causal links means that maximally coherent items
need not be the most probable. This result suggests that a biased initialization can be an effective approach given

17We take the square root for visualization purposes only.
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F IGURE 11 Heatmap of
√
DKL (P | |Qbi as ) − DKL (P | |Qunbi as ), where Qbi as refers to the estimated joint for a

biased initialization. Red squares correspond to a benefit for biased initialization, and blue squares correspond to a
benefit for unbiased initialization. Saturation corresponds to the magnitude of difference in KL divergence (larger
differences have higher saturation).

initial uncertainty about which graph states are most probable.
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8 | APPENDIX C: MODEL FITS TO CONDITIONAL REASONING STUDIES

The normative model and mutation sampler were fit to causal reasoning data from 18 experimental conditions re-
ported in four articles. Each of those conditions is described briefly in Table 4 and in greater detail below.

Rehder and Burnett (2005) (referred to as RB05 in Table 5) taught participants categories whose features were
causally related and then asked them to judge the probability that a category member had a feature given a number
of the category member’s features. In every experiment categories had four features. Experiment 1 tested a common
cause network (hereafter referred to as CC network) in which a single feature caused three others. Conditional prob-
ability queries presented a category member in which the state of three features was given and asked participant to
predict a third feature. Experiment 2 was identical to Experiment 1 except that “blank” materials were used, that is,
the domain of the category was not identified and the features were simply referred to as "A," "B," etc. Experiment 3
was identical to Experiment 1 except that there were two rather than three “given” features in the conditional prob-
ability queries. Experiment 4 was identical to Experiment 3 except that the four features formed a common effect
network a single feature was caused by three others. The three features were described as independent causes of
the effect (thus, a CE-Indep. network). In Experiment 5 the features formed a causal chain (CH) and there were three
given features in the conditional probability queries.

Rehder (2015) (R15 in Table 5) also tested causally-related category features. All categories had six features. In
Experiment 1, three features formed a common effect network in which two features independently caused a third
(CE-Indep.). The other three features formed a common effect network in which two features conjunctively caused
a third (CE-Conj.). Experiment 2 tested two between-participant conditions. In one, the two triplets of features each
formed an independent common effect network but in one triplet the causal relationswere described as only operating
“occasionally” (CE-Indep. [weak]) whereas in the other they were described as operating “often” (CE-Indep. [strong]).
In the other between participant condition the triplets each formed a conjunctive common effect network and the
links were either weak (CE-Conj. [weak]) or strong (CE-Conj. [strong]).

Rehder andWaldmann (2017) (RW17) instructed participants on two causal relationships taken from the domain
of either economics, sociology, or meteorology. Those relationships formed a common effect network in Experiment
1 and a common cause network in Experiment 2. Each experiment compared between-participant conditions in which
participants were given either just a causal network, just data generated from that causal network, or both; here we
present fits to the conditions in which participants were only given a causal network.

Using the samematerials as Rehder andWaldmann (2017), Rehder (2018) (R18) conducted three experiments that
each tested an extended common cause network (in which the effects themselves had effects: ZA←YA←X→YB→ZB )
and an extended common effect network (in which the causes themselves had causes: ZA→YA→X←YB←ZB ). The
number of distinct types of conditional probability judgments was 19 in Experiment 1 and 27 in Experiments 2 and 3.
In Experiment 3 only participants were told that the causal relations operated 75% of the time.

In each condition participants’ ratings were fit according to

rating(t i ) = s ∗ pM ,θM (t i )

where M is a model, θM are its parameters, t i is a test item (i.e., a conditional probability query). Both the norma-
tive model and the mutation sampler were used to derive a joint probability distribution via the methods described
in Appendix A, which was then used to derive the conditional probability appropriate for each test item. Although
in general a causal graph’s c parameters (representing the marginal probabilities of the root variables), m parameters
(representing the strengths of the causal links), and b parameters (representing the strengths of causes extrinsic to the
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graph) can all differ from one another, the materials and counterbalancing used in the above studies were such that
these parameters could be collapsed into a single c, a singlem , and a single b (which, because they represent probabil-
ities, were each constrained to the range [0, 1]). Parameter s (constrained to the range 0-300) is a scaling parameter
that maps M ’s predictions onto the 0-100 response scale. The mutation sampler included an additional λ parameter
representing the mean chain length, constrained to the range [2, 64]. The models were fit to each participant’s causal
judgments by identifying parameters that minimized squared error.

For each experimental condition, Table 5 presents the number of variables in the network, the number of par-
ticipants tested in that condition, and the number of distinct types of conditional probability queries they answered.
For both the normative model and the mutation sampler it also presents the model’s best fitting parameters averaged
over participants and a number of measures of fit, including the correlation between predicted and observed values
averaged over participants (R), and a measure (AIC) that takes into account a model’s number of parameters18. Finally,
the last column of Table 5 presents the percentage of participants best fit by the mutation sampler in each condition.
The table indicates that the mutation sampler yielded a better fit as compared to the normative model in all 19 exper-
imental conditions. In addition, a larger number of participants were better fit by the mutation sampler in 16 of the
19 conditions.

18AIC = n*log (SSE/n) + 2*(p + 1) where SSE = sum of squared error, n = number of data points fit and p = a model’s number of parameters. This measure was
deemed by Burnham and Anderson (1998) as appropriate for comparing models fit by least squares.
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TABLE 5 Fits of the normative model and the mutation sampler to past inference studies. Values in bold italic red reflect cases in which the mutation
sampler yielded a better fit as compared to the normative model.

No. of No. of Para- Measures
network No. of judgment meters of fit

Study Expt. Condition variables subjects types Model c m m2 b λ s R AIC Pct. subjects
RW17 1 CE-I 3 48 11 Norm .401 .483 .178 158 .880 2981.6

MS .446 .467 .256 17.9 128 .910 2933.1 38%
2 CC 3 48 11 Norm .536 .666 .335 157 .884 3031.2

MS .416 .370 .371 6.2 130 .929 2681.5 69%
RB05 1 CC 4 24 10 Norm .485 .675 .244 116 .879 1468.4

MS .682 .753 .414 6.3 104 .929 1255.3 63%
2 CC 4 24 10 Norm .676 .612 .438 111 .693 1605.1

MS .602 .379 .397 7.8 111 .686 1604.9 54%
3 CC 4 24 10 Norm .553 .658 .257 112 .796 1470.6

MS .637 .325 .438 3.9 98 .834 1366.7 68%
4 CE-I 4 24 10 Norm .396 .427 .040 139 .842 1447.0

MS .539 .503 .176 6.6 108 .948 1267.1 70%
5 Chain 4 18 32 Norm .605 .727 .247 100 .801 3573.5

MS .520 .522 .322 4.6 101 .892 3321.3 89%
R15 1 CE-I 6 48 14 Norm .463 .661 .763 .147 134 .882 4220.1

& CE-C MS .523 .712 .839 .201 5.1 105 .938 3848.0 73%
2 CE-I (weak) & 6 48 14 Norm .549 .569 .712 .150 125 .899 3826.7

CE-I (strong) MS .525 .508 .683 .226 8.4 109 .931 3674.0 52%
CE-C (weak) & 6 48 14 Norm .290 .409 .516 .163 196 .868 4078.0
CE-C (strong) MS .551 .495 .720 .313 3.5 107 .923 3794.0 73%

R18 1 CC 5 48 19 Norm .478 .534 .264 128 .773 5324.7
MS .465 .294 .378 11.1 115 .864 4904.8 81%

CE-I 5 48 19 Norm .488 .549 .219 140 .765 5144.6
MS .464 .396 .256 26.5 117 .799 5056.0 52%

2 CC 5 60 27 Norm .461 .547 .239 136 .781 9495.4
MS .439 .445 .282 17.1 123 .848 9120.7 70%

CE-I 5 60 27 Norm .484 .601 .159 136 .815 9498.4
MS .478 .551 .175 26.5 115 .852 9367.9 58%

3 CC 5 60 27 Norm .486 .454 .280 147 .728 9107.5
(75%) MS .523 .397 .344 23.5 112 .777 8920.9 53%
CE-I 5 60 27 Norm .554 .504 .292 123 .703 8942.7
(75%) MS .493 .384 .325 27.7 111 .748 8741.8 47%

Note: RW17 = Rehder and Waldmann (2017); RB05 = Rehder and Burnett (2005); R15 = Rehder (2015); R18 = Rehder (2018). CC = common cause netwok; CE = common effect network.
CE-I and CE-C denote common effect networks with independent and conjunctive causes, respectively. Norm = normative model. MS = mutation sampler. AIC = Akaike’s information
criterion.
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9 | APPENDIX D: MODEL FITS TO CAUSAL CATEGORIZATION STUDIES

The normativemodel and themutation sampler were fit to causal categorization data from 25 experimental conditions
reported in seven articles. In every condition, subjectswere first taught categorieswhose binary featureswere causally
related. The example of Myastars presented in the main text was one member of a set of six experimental categories
that included biological kinds (species of ants and shrimp), non-living natural kinds (types of stars and molecules), and
artifacts (types of cars and computers). To ensure that subjects learned the category’s features and causal relations
they were required to pass an extensive multiple choice test. The items presented on the subsequent classification
test consisted of a set of features (e.g., a star with ionized helium, normal temperature, a large number of planets,
etc.).

Rehder and Hastie (2001, Experiment 2) (referred to as RH01 in Table 6) taught subjects categories with four
binary features. In one condition the features formed a common cause network (one feature caused the other three).
In another they formed a common effect network (one feature was caused by the other three). In all conditions
subjects were told that one feature on each binary dimension occurred in 75% of category members and that the
other occurred in 25% of category members (e.g., that 75% of Myastars have high density and 25% have normal
density). Test items consisted of all 16 items that can be formed from four binary dimensions. For purposes of fitting,
those 16 items were aggregated into 8 distinct types, formed by crossing the presence versus absence of X and the
number of Y features present (0-3).

Rehder (2003a) (R03a) also taught subjects categories whose four features formed either a common cause or
common effect network. Unlike Rehder and Hastie (2001), in this experiment subjects were not given the 75/25%
feature base rate information. There were 16 test items of 8 distinct types. Rehder (2003b) (R03b) taught subjects
categories whose four features formed a causal chain (W → X → Y → Z ). 75/25% feature base rate information
was provided in Experiment 1 but not Experiment 2. There were 16 test items of 8 distinct types.

Rehder and Kim (2006) (RK06) taught subjects categories with five binary features. In Experiment 1, subjects
performed two within-subject conditions that varied the causal knowledge that was provided. In one, the “212” con-
dition, two features caused one feature, which in turn causes two features. In the other, three of the five features
formed a causal chain (one of two sub-networks of the 212 network, counterbalanced over subjects, which ensured
that comparisons between conditions involved the same category features. Experiment 2 consisted of a “311” condi-
tion (three features caused on feature, which caused another feature) and a causal chain (one of three sub-networks
of the 311 structure). Experiment 3 consisted of a “113” condition (one feature causes one feature, which causes
three features) and a causal chain (one of three sub-networks of the 113 structure). In all three experiments, one
feature on each binary dimension was described as occurring in “most” category members while the other features
was described as occurring in “some” category members. There were 32 test items, aggregated into various numbers
of distinct types depending on the condition.

Rehder and Kim (2008) (RK08) taught subjects categories with four binary features that formed a causal chain.
The unipolar condition was like the previous experiments in that the values on the binary dimensions were either
“normal” or value that was distinct from normal (e.g., “Most Myastars have high density whereas some have normal
density.”). In contrast, in the bipolar condition there were two distinct (i.e., non-normal) values on each dimension (e.g.,
“Most Myastars have high density whereas some have low density.”). There were 16 test items of 16 distinct types.

Rehder and Kim (2010) (RK10) taught subjects categories with three binary features that formed a causal chain
(X → Y → Z ). Experiment 1 included two conditions. In the strong condition, subjects were told that each cause
feature brought about its effect 100% of the time. In the weak condition, they did so 75% of time. In the “weak-alt”
condition of Experiment 2 subjects were told that each effect feature had no cause other than its parent in the causal



Davis & Rehder 45

chain. In the “strong-alt” condition they were told that each effect feature would occur with probability 50% even
when its parent cause in the causal chain was absent. Two additional experiments testing a three-element causal
chain were reported in Appendix B of Rehder and Kim (2010). The first manipulated causal strength between 100%
and 75% (as in Experiment 1) but subjects were additionally told that each effect had no other causes. The second
manipulated causal strength between 90% and 60%. In all experiments, one feature on each binary dimension was
described as occurring in “most” category members and the dimensions were bipolar (as in Rehder and Kim (2008),
above). There were 8 test items, except for the final 90%/60% experiment in which there were 16 (each distinct test
item was presented twice).

As described in Appendix C, Rehder (2015) (R15) taught subjects categories with six binary features. These fea-
tures formed an independent and conjunctive common effect sub-network (Experiment 1), two independent common
effect sub-networks (Experiment 2, independent condition), or two conjunctive common effect sub-networks (Exper-
iment 2, conjunctive condition). Causal strength was manipulated within each condition of Experiment 2. Subjects
rendered not only conditional probability judgments (as described in Appendix C) but also categorization judgments.
In each experiment there were 16 test items of 12 distinct types.

The aggregate classification ratings in each condition were fit according to

r at i ng (t i ) = 100 ∗ pM ,θM (t i )
γ

where t i is a test items, M is a model, and θM are its parameters. The normative model had the same causal model
parameters as in Appendix C; the mutation sampler had an additional bi as parameter (constrained to the range 0-
1). Parameter γ (range 0-4) provides a nonlinear power transformation of a model’s predicted joint probability19.
The result was then multiplied by 100 to scale it onto the 0-100 rating scale. The model fitting procedure again
minimized squared error. Table 6, which has the same format as Table 5 in Appendix C, presents the results of fitting
the classification data. It shows that themutation sampler yielded a better fit (correcting for the number of parameters)
as compared to the normative model in 21 of the 25 experimental conditions.

19The power transformation allows the evidence for category membership provided by each feature in a test item to be integrated in a manner other than
multiplication. Examination of Table C1 indicates that the fits yielded values of γ in the range [0.1, 0.4]. The transformation specified by a γ in this range is
very similar to a logarithm. That is, subjects tended to add rather than multiply the evidence for category membership provided by each feature. See Griffiths
and Tenenbaum (2005) and Rehder (2015) for examples of power function transformations.
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TABLE 6 Fits of the normative model and the mutation sampler to past causal categorization studies. AIC values in bold italic red
reflect cases in which the mutation sampler yielded a better fit as compared to the normative model.

No. of No. of Para- Measures
network No. of judgment meters of fit

Study Expt. Condition variables subjects types Model c m m2 b λ bias γ R AIC
RH01 2 CC 4 78 8 Norm .940 .756 .444 .166 .988 25.4

MS .978 .739 .587 43.7 .392 .168 .999 11.9
2 CE-I 4 78 8 Norm .821 .615 .317 .166 .998 12.3

MS .814 .602 .322 64.0 .985 .166 .998 16.3
R03a CC 4 36 8 Norm .895 .733 .294 .170 .981 28.1

MS .933 .630 .410 10.5 .685 .174 1.000 -14.4
CE-I 4 36 8 Norm .700 .890 .003 .142 .965 37.1

MS .623 .833 .004 4.2 .902 .143 .997 21.4
R03b 1 Chain 4 36 16 Norm .931 .613 .735 .164 .986 41.6

MS .941 .559 .775 64.0 .942 .159 .988 43.0
2 Chain 4 36 16 Norm .722 .867 .258 .255 .910 71.7

MS .546 .603 .284 3.4 .771 .241 .979 53.2
RK06 1 212 5 72 18 Norm .889 .470 .800 .135 .993 33.2

MS .584 .308 .424 3.0 1.000 .129 .998 13.4
Chain 3 72 8 Norm .747 .346 .648 .304 .998 7.9

MS .772 .271 .698 64.0 .210 .304 1.000 -2.8
2 311 5 72 16 Norm .862 .448 .830 .144 .987 42.9

MS .860 .395 .851 64.0 .995 .142 .988 45.8
Chain 3 72 8 Norm .718 .331 .602 .333 .982 22.4

MS .517 .078 .431 3.4 .935 .333 .991 20.8
3 113 5 72 16 Norm .925 .473 .686 .171 .964 56.5

MS .793 .347 .370 3.8 .998 .152 .992 36.8
Chain 3 72 8 Norm .799 .522 .561 .318 .985 24.4

MS .627 .206 .449 3.4 .917 .316 1.000 -4.5
RK08 Bipolar 4 36 16 Norm .871 .920 .320 .269 .908 77.1

MS .549 .603 .226 2.7 .892 .256 .982 56.2
Unipolar 4 36 16 Norm .939 .545 .709 .180 972 52.6

MS .839 .312 .500 3.7 .993 .172 .987 44.8
RK10 1 Chain (weak) 3 36 8 Norm .866 .894 .307 .284 .950 40.0

MS .647 .555 .310 2.0 .882 .271 .997 22.1
Chain (strong) 3 36 8 Norm .855 .980 .122 .365 .975 38.5

MS .623 .816 .255 2.0 .859 .372 .994 30.6
2 Chain (weak alt.) 3 36 8 Norm .834 .899 .187 .352 .974 35.7

MS .644 .617 .193 2.6 .841 .346 .996 25.4
Chain (strong alt.) 3 36 8 Norm .870 .848 .562 .248 .983 30.2

MS .587 .665 .332 2.7 .965 .228 1.000 -15.1
App Chain (no alt., weak) 3 36 8 Norm .915 .936 .156 .337 .979 35.9

MS .717 .719 .132 2.5 .919 .325 .995 28.2
Chain (no alt., strong) 3 36 8 Norm .802 .999 .005 .315 .989 35.3

MS .491 .970 .026 2.0 .782 .340 .993 35.3
App Chain (60%) 3 48 8 Norm .888 .891 .374 .290 .963 37.9

MS .688 .561 .362 2.0 .912 .276 .998 16.6
Chain (90%) 3 48 8 Norm .865 .758 .432 .316 .962 36.1

MS .594 .433 .234 2.7 .918 .307 .997 19.8
R15 1 CE-I & 6 48 12 Norm .823 .855 .977 .278 .286 .981 47.7

CE-C MS .729 .862 .970 .150 29.1 1.000 .267 .992 41.0
2 CE-I (weak) & 6 48 12 Norm .871 .402 .733 .742 .246 .991 39.5

CE-I (strong) MS .861 .382 .721 .735 64.0 1.000 .245 .990 44.4
CE-C (weak) & 6 48 12 Norm .846 .847 .914 .600 .283 .991 36.7
CE-C (strong) MS .853 .819 .899 .632 47.1 .863 .281 .994 35.9

Note: RH01 = Rehder and Hastie (2001); R03a = Rehder (2003a); R03b = Rehder (2003b); RK06 = Rehder and Kim (2006); RK08 = Rehder and Kim (2008); RK10 = Rehder and Kim (2010); R15 = Rehder (2015). CC = common cause
netwok; CE = common effect network. CE-I and CE-C denote common effect networks with independent and conjunctive causes, respectively. Norm = normative model. MS = mutation sampler. AIC = Akaike’s information criterion.
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10 | APPENDIX E: MODEL FITS TO INTERVENTION EXPERIMENTS

The models were fit to the four intervention experiments reported in Waldmann and Hagmayer (2005). Experiments
1 and 2 are described in the main text. In Experiments 3 and 4 all subjects were instructed on the common cause
structure shown in Fig. 6J. In Experiment 3 the marginal probability, or “base rate” of the common cause (P in Fig. 6J)
as it appeared in the training data was manipulated. In the high base rate condition P was present in 16 of the 20
training instances whereas in the low base rate condition it was present in only 4 instances. In Experiment 4 the
strengths of the causal relations was manipulated such that one of the causal links in the common cause structure
was strong while the other was weak (see Waldmann & Hagmayer, 2005, for details).

The aggregate ratings in each experiment were fit according to

rating(t i j ) = s ∗ pMi ,θMi (t i j )

whereMi is a model, θMi are its parameters, and t i j is a query aboutMi . The model varied depending on experimental
condition (betweenModel A andModel B in Experiment 1, between a Common Cause and Chain model in Experiment
2, etc.) and whether the antecedent given in the test item was described as resulting from an observation or an
intervention. For example, when Model A subjects in Experiment 1 were asked to rate p(S = 1 |H = 1) (i.e., to predict
the presence of S given that H was observed present) then Model A was used to generate the conditional probability
of S given H . But when subjects were asked to rate p(S = 1 |do(H = 1)) (i.e., to predict S when the presence of H
was due to an intervention) then graph surgery was performed on Model A (i.e., the causal link between P and H ) was
removed before the conditional probability of S given H was computed. In Experiments 1 and 2 the causal models
had the same parameters as in Appendix C (c, m , b , and s for the normative model; the additional parameters for the
samplers were λ and bi as ). Because Experiment 3 manipulated the base rate of the common cause, the fits in that
experiment included two c parameters (for the high and low base rate conditions, respectively). Because Experiment
4 manipulated the strengths of the causal relationships, the fits in that experiment included two m parameters.

Table 7 presents the results of fitting the intervention data. It shows that the mutation sampler yielded a better
fit than the normative model in all four experiments in Waldmann and Hagmayer (2005).
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No. of No. of Params Measures of fit
network No. of judge

Exp. variables subjects types Model c c2 m m2 b λ bias R AIC
1 5 50 8 Norm. 0.270 0.965 0.032 0.973 16.9

MS 0.078 0.914 0.034 62.5 0.320 0.996 5.9
2 3 48 8 Norm. 0.393 0.795 0.084 0.990 4.1

MS 0.388 0.749 0.109 18.5 0.101 >0.999 -24.1
3 3 32 8 Norm. 0.506 0.232 1.000 0.140 0.968 16.6

MS 0.436 0.032 1.000 0.144 20.0 0.422 0.993 7.69
4 3 32 8 Norm. 0.530 1.000 0.567 0.076 0.974 8.99

8 MS 0.837 0.966 0.398 0.063 40.0 0.001 0.996 -2.44

TABLE 7 Fits of normative model and mutation sampler to all experiments from Waldmann and Hagmayer (2005).
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We note that the excellent quantitative fit of the mutation sampler in Fig. 6I may be due to the overfitting, a
possibility that arises because of the relatively small number of conditional probability judgments that participants
were asked in these experiments. For this reason, we believe that the more important theoretical point is that the
mutation sampler can account qualitatively for a violation of independence in the context of interventions that the
normative model cannot.

11 | APPENDIX F: SAMPLING FOR CONDITIONAL PROBABILITY QUERIES

Fig. 12 presents the rates of convergence for six conditional probability queries associated with the five-variable
network presented earlier in Fig. 2 as a function of chain length (λ). Each panel shows the conditional probability
computed by the normative model (red), the mutation sampler (black), and the alternative sampler in which states
where the conditional probability query’s antecedent are true are ten times more likely to be sampled than those in
which it is false (blue). In each panel the alternative sampler converges faster than the standard one. Moreover, this
effect is larger as the number of variables involved in the antecedent increases: The advantage for the alternative
sampler is larger in the bottom row in Fig. 12, which presents conditional probability queries whose antecedents
include four variables, than it is in the top row, which presents queries whose antecedents include only two variables.
These results show that the mutation sampler can compute reasonably accurate conditional probability queries in a
large network with even a modest number of samples.

Fig. 12 presents the rates of convergence for six conditional probability queries associated with the five-variable
network presented earlier in Fig. 2 as a function of chain length (λ). Each panel shows the conditional probability
computed by the normative model (red), the mutation sampler (black), and the alternative sampler in which states in
which the conditional probability query’s antecedent are true are ten times more likely to be sampled than those in
which it is false (blue). In each panel the alternative sampler converges faster than the standard one. Moreover, this
effect is larger as the number of variables involved in the antecedent increases: The advantage for the alternative
sampler is larger in the bottom row in Fig. 12, which presents conditional probability queries whose antecedents
include four variables, than it is in the top row, which presents queries whose antecedents include only two variables.
These results show that the mutation sampler can compute reasonably accurate conditional probability queries in a
large network with even a modest number of samples.



50 Davis & Rehder

●

●

●
●

● ● ● ●

0.65

0.70

0.75

0.80

0.85

0 16 32 48 64 80 96 112

Lambda

C
on

di
tio

na
l p

ro
ba

bi
lit

y

●

Normative

Mut. sampler

Mut. sampler (cond. sampling)

p(E=1|C=1,A=1)

●

●

●

●
●

● ● ●

0.25

0.30

0.35

0.40

0 16 32 48 64 80 96 112

Lambda

C
on

di
tio

na
l p

ro
ba

bi
lit

y

●

Normative

Mut. sampler

Mut. sampler (cond. sampling)

p(E=1|C=0,A=1,D=1)

●

●

●
●

● ● ● ●

0.65

0.70

0.75

0.80

0.85

0 16 32 48 64 80 96 112

Lambda

C
on

di
tio

na
l p

ro
ba

bi
lit

y

●

Normative

Mut. sampler

Mut. sampler (cond. sampling)

p(E=1|C=1,A=0,D=1,B=1)

●

●

●
● ● ● ● ●

0.65

0.70

0.75

0.80

0.85

0 16 32 48 64 80 96 112

Lambda

C
on

di
tio

na
l p

ro
ba

bi
lit

y

●

Normative

Mut. sampler

Mut. sampler (cond. sampling)

p(D=1|B=1,E=1)

●

●

●
●

● ● ● ●

0.25

0.30

0.35

0.40

0 16 32 48 64 80 96 112

Lambda

C
on

di
tio

na
l p

ro
ba

bi
lit

y

●

Normative

Mut. sampler

Mut. sampler (cond. sampling)

p(D=1|B=0,C=0,E=1)

●

●

●

●
●

● ● ●

0.65

0.70

0.75

0.80

0.85

0 16 32 48 64 80 96 112

Lambda

C
on

di
tio

na
l p

ro
ba

bi
lit

y

●

Normative

Mut. sampler

Mut. sampler (cond. sampling)

p(D=1|B=1,C=0,E=1,A=0)

F IGURE 12 Six conditional probability judgments generated by the normative model (red), the standard
mutation sampler (black), and the mutation sampler with an alternative proposal distribution (blue). Marginal
probability of root causes = .50; causal strengths = .80, and strength of alternative causes = .25.
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Rehder (2018), Rehder & Kim Causal
Model Experiment 2, (2010), Waldmann & Representations,

Common Experiment 1, Hagmayer Common
Cause Weak (2005), Effect

Condition Condition Experiment 1 Condition
Normative 9495.4 40.0 16.9 993.2
Unbiased Egalitarian Sampler 9624.6 41.1 17.4 1115.5
Egalitarian Sampler 9249.4 34.5 5.9 795.4
Unbiased Sampler 9358.3 42.0 31.2 981.1
Mutation Sampler 9120.7 22.1 2.9 793.4

TABLE 8 AIC values of alternative models defined by dropping core principles of the mutation sampler for
particular empirical data sets.

12 | SUPPLEMENTARY MATERIALS

Each of the sections below describe the results of fitting the four alternative sampling models to a particular empirical
data set. Table 8 presents AICs for each of these data sets for each model. The fits of these models to any other data
set reported in this article are available from the authors.

12.1 | Causal Reasoning

Table 2 in the main text indicates that the mutation sampler not only provided a better fit than the normative model
but also each of the alternative samplingmodels in which one ormore of the four principles were relaxed. To exemplify
their differences, we now present the fits of each of these models to one particular data set, namely, the condition
in Experiment 2 of Rehder (2018) that tested an extended common cause graph (ZA←YA←X→YB→ZB ). The four
panels in Fig. 13 present the fit of the unbiased egalitarian sampler (panel A), the unbiased sampler (panel B), the
egalitarian sampler (C), and the mutation sampler (D), superimposed on the empirical data and the fit of the normative
model. The x-axis in each panel present four pairs of conditional probability queries. Due to the Markov condition,
each pair of conditional probabilities should be equal. For example, p(z 1

i
|x0y 0

i
y 0
j
z 0
j
) should equal p(z 1

i
|x0y 0

i
y 0
j
z 1
j
))

even though Z j is stipulated to equal 0 in the former versus 1 in the later. This is so because the value of Z j is
screened off from Zi by the values of X ,Yi , andYj . The fits of the normative model in Fig. 13 indicate that each pair
of adjacent conditional probability judgments should reflect independence.

Fig. 13 indicates that the unbiased egalitarian sampler is a poor account of these data as its fit does not dif-
fer appreciably from that of the normative model. The unbiased and egalitarian samplers account for some the
independence violations, namely, that (p(z 1

i
|x0y 0

i
y 0
j
z 0
j
) < p(z 1

i
|x0y 0

i
y 0
j
z 1
j
) and p(z 1

i
|x1y 1

i
y 1
j
z 0
j
) < p(z 1

i
|x1y 1

i
y 1
j
z 1
j
))

(those pairs on the far left and far right of each panel in Fig. 13). However, they do not account for others, namely,
p(z 1

i
|x0y 0

i
y 1
j
z 0
j
) < p(z 1

i
|x0y 0

i
y 1
j
z 1
j
) and p(z 1

i
|x1y 1

i
y 0
j
z 0
j
) < p(z 1

i
|x1y 1

i
y 0
j
z 1
j
) (the two interior pairs). In contrast, Fig. 13

reveals that the mutation sampler provides a full account of the observed pattern of independence violations in this
experiment and Table 8 shows that it provides the best quantitative fit.

Why do the unbiased, egalitarian, and mutation samplers differ in the independence violations they account for?
First, the egalitarian and mutation samplers differ in their preferences for coherence in network states (where coher-
ence refers to the proportion of variables in a state that have the same value). The mutation sampler instantiates a
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graded preference for coherence—the more variables with equal values, the better. This is so because, by making
small adjustments to one of the (maximally coherent) prototype states, the mutation sampler also oversamples the
mostly coherent neighboring states (those with 4 equal values) relative to other, less coherent states (those with 3
equal values). In contrast, because the egalitarian sampler can transition to any state, it does not oversample the
mostly coherent states. As a result, although both models reproduce the independence violations in Fig. 13 when
the conditional probability queries involve a comparison between graph states with 4 and 5 equal values, only the
mutation sampler does so when they involve states with 3 and 4 equal values. These findings provide empirical ev-
idence in favor of the mutation sampler’s proposal distribution. Second, the unbiased and mutation samplers differ
in the means via which independence violations are produced. Whereas the mutation sampler’s independence vio-
lations depend primarily on its initial preference for prototype states, the unbiased sampler’s arise because the MH
sampling dynamics are such that the relative probability of network states change as the length of the sampling chain
increases. Independence violations that mirror the ones that subjects commit can arise for certain favorable causal
model parameter values. As Fig. 13 indicates however, those favorable parameter values reproduce some but not all
of the independence violations.

12.2 | Causal Categorization

Table 2 in the main text indicates that the mutation sampler also provided a better fit than the alternative samplers.
Fig. 14 presents the fits of all four samplingmodels to theweak condition from Experiment 1 of Rehder and Kim (2010)
that tested a chain graph (X→Y→Z ). The four panels in Fig. 14 present the fit of the four samplers superimposed on
the empirical data and the fit of the normative model. The x-axes present the categorization judgments that subjects
were asked to make.

Fig. 14 indicates that both unbiased samplers provide a poor account of these data as their fits do not differ
appreciably from the normative model’s. The egalitarian sampler fares better as it accounts for data points that the
unbiased samplers do not (in particular, p(x0y 0z 1) and p(x0y 0z 1)). Nonetheless, it incorrectly predicts the relative
order of others (p(x1y 0z 1) and p(x1y 1z 0)). Table 8 shows that the mutation sampler provides the best account of the
data from this experiment.

12.3 | Causal Interventions

Table 2 in themain text shows that themutation sampler provided a better fit than the alternative samplers and Fig. 15
presents the fits of all four sampling models to Experiment 1 ofWaldmann and Hagmayer (2005). The figure indicates
that the unbiased egalitarian sampler is a poor account of these data as its fit does not differ appreciably from that of
the normativemodel. The other threemodels perform better as they are able to reproduce the key difference between
p(s1 |do(h1)) and p(s1 |do(h0)). Nevertheless, Table 8 shows that the mutation sampler yielded the best quantitative
fit.

12.4 | Causal Representations

Fig. 15 presents the fits of the four sampling models to the common effect coins experiment. It indicates that the fits
of both unbiased samplers do not differ appreciably from the normative model’s. Although Table 8 indicates that the
fit of the mutation sampler was slightly better than that of the egalitarian sampler, Fig. 15 shows that the fits of these
two models were qualitatively identical.
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F IGURE 13 Fits of alternative models to Experiment 2 of Rehder (2018).
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F IGURE 14 Fits of alternative models to Experiment 1 of Rehder and Kim (2010).
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F IGURE 15 Fits of alternative models to Experiment 1 of Waldmann and Hagmayer (2005).
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F IGURE 16 Fits of alternative models to the common effect coins experiment.


